Answer
Verified
114.9k+ views
Hint: Specific Gravity is defined as the ratio of density of a given object to the density of water. For the cork to just float on water, it has to be in complete vertical equilibrium, that is the buoyant force has to be equal to the total weight.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Complete step by step answer:
We know that specific gravity is the ratio between the density of an object and density of water $\left( \rho \right)$. So to calculate density of load $\left( {{\rho _1}} \right)$,
Specific Gravity$ = \dfrac{{{\rho _1}}}{\rho }$
$\Rightarrow 11 = \dfrac{{{\rho _1}}}{\rho }$
Since, $\rho = 1g/cc$
$\Rightarrow {\rho _1} = 11g/cc$
Similarly the density of cork $\left( {{\rho _2}} \right)$ can be calculated and,
${\rho _2} = 0.2g/cc$
Mass of cork, ${m_2} = 10g$
So, the volume of cork, ${V_2} = \dfrac{{{m_2}}}{{{\rho _2}}}$
$\Rightarrow {V_2} = \dfrac{{10}}{{0.2}}$
$\Rightarrow {V_2} = 50c{m^3}$
Let the volume of load which is to be added be ${V_1}$, then in order to attain equilibrium, buoyant force $\left( {{F_B}} \right)$ has to be equal to the sum of weight of load and weight of cork$\left( {{W_2}} \right)$, that is
$\Rightarrow {F_B} = {W_1} + {W_2}$
Since the cork and load displace ${V_1} + {V_2}$ volume of water,
$\Rightarrow \left( {{V_1} + {V_2}} \right)\rho g = mg + {V_1}{\rho _1}g$
$\Rightarrow {V_1} + {V_2} = m + {V_1}{\rho _1}$
$\Rightarrow \left[ {\rho = 1g/cc} \right]$
$\Rightarrow {V_2} - m = {V_1}{\rho _1} - {V_1}$
$\Rightarrow {V_2} - m = {V_1}\left( {{\rho _1} - 1} \right)$
$\Rightarrow {V_1} = \dfrac{{{V_2} - m}}{{{\rho _1} - 1}}$
$\Rightarrow {V_1} = \dfrac{{50 - 10}}{{11 - 1}}$
$\Rightarrow {V_1} = \dfrac{{40}}{{10}}$
$\Rightarrow {V_1} = 4c{m^3}$
To calculate mass of the load to be added, ${m_1} = {\rho _1}{V_1}$
$\Rightarrow {m_1} = 11 \times 4$
$\Rightarrow {m_1} = 44g$
Therefore option B is correct.
Note: Buoyant force is an upward force exerted by the water displaced by the object. If the buoyant force is greater than or equal to the weight of the object, the object floats. If the buoyant force is less than the weight of the object, it sinks.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs