![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Let two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle. A point P moves so that at any time t the position vector $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . When P is farthest from origin O,let M be the length of $\mathop {OP}\limits^ \to $and $\mathop u\limits^ \wedge $ be the unit vector along vector OP. Then:
A) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
B) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge - \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
C) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
D) $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge - \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Answer
125.1k+ views
Hint: Two non collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $are given. We only need to put the position vector equation and then apply the formula for maximum value and some trigonometric function for M. After that we will get the unit vector by applying the formula of the unit vector and hence get our answer.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)