
Let the resistance of an electrical component remain constant while the potential difference across the two ends of the component decreases to half of its former value. What change will occur in the current through it?
Answer
177.9k+ views
Hint: Use the Ohm’s law to deduce the relation between current, potential difference and resistance. Always remember that the Ohm’s law is only valid when the temperature and other physical quantities are constant.
Complete step by Step Solution:
As a path is generated to allow electric charge to be continuously carried, an electric circuit is formed. This constant passage of electric charge through the circuit conductors is referred to as the wind, which is sometimes referred to as the flow of fluid through a hollow pipe.
The driving force of the load carriers through a circuit is called voltage. Voltage is a basic measure of the potential energy between two points. Actually, drivers with any friction or resistance to movement prefer to push by. This resistance is better known as resistance. The voltage of the circuit depends on the voltage and resistance in the circuit in order to resist the current flow.
Ohm's law states that the current flowing in the circuit is directly proportional to the voltage difference across the circuit in a metal conductor at each particular temperature.
According to Ohm’s Law,
$V = IR$
Where,
$V$ is the Potential Difference,
$I$ is the current
$R$ is the resistance
Therefore,
$\therefore$ $I = \dfrac{V}{R}$
Now, the potential difference is decreased to half, according to the question,
$\therefore$ $V' = \dfrac{V}{2}$
Resistance remains constant, therefore, new current will be,
$\Rightarrow$ $I' = \dfrac{{\dfrac{V}{2}}}{R}$
$\therefore$ $I' = \dfrac{I}{2}$
Therefore, if the voltage is reduced to half of its value then the current is also abridged to half.
Note: Alternatively, you can also write that since current and potential difference are directly proportional to each other, therefore, the change in the amount of voltage will be equal to the change in the amount of current. Also remember that while solving numerical problems, take the quantities in their respective standard units.
Complete step by Step Solution:
As a path is generated to allow electric charge to be continuously carried, an electric circuit is formed. This constant passage of electric charge through the circuit conductors is referred to as the wind, which is sometimes referred to as the flow of fluid through a hollow pipe.
The driving force of the load carriers through a circuit is called voltage. Voltage is a basic measure of the potential energy between two points. Actually, drivers with any friction or resistance to movement prefer to push by. This resistance is better known as resistance. The voltage of the circuit depends on the voltage and resistance in the circuit in order to resist the current flow.
Ohm's law states that the current flowing in the circuit is directly proportional to the voltage difference across the circuit in a metal conductor at each particular temperature.
According to Ohm’s Law,
$V = IR$
Where,
$V$ is the Potential Difference,
$I$ is the current
$R$ is the resistance
Therefore,
$\therefore$ $I = \dfrac{V}{R}$
Now, the potential difference is decreased to half, according to the question,
$\therefore$ $V' = \dfrac{V}{2}$
Resistance remains constant, therefore, new current will be,
$\Rightarrow$ $I' = \dfrac{{\dfrac{V}{2}}}{R}$
$\therefore$ $I' = \dfrac{I}{2}$
Therefore, if the voltage is reduced to half of its value then the current is also abridged to half.
Note: Alternatively, you can also write that since current and potential difference are directly proportional to each other, therefore, the change in the amount of voltage will be equal to the change in the amount of current. Also remember that while solving numerical problems, take the quantities in their respective standard units.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electron Gain Enthalpy and Electron Affinity for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

IIT Full Form

Other Pages
Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Important Days and Dates in August

MBBS Seats in India 2025: State & College Wise Updates

NEET Total Marks 2025
