
In an experiment to verify Stokes law, a small spherical ball of radius r and density falls under gravity through a distance h in the air before entering a tank of water. If the terminal velocity of the ball inside water is the same as its velocity just before entering the water surface, then the value of h is proportional to (ignore viscosity of air)
1. \[{r^4}\]
2. \[r\]
3. \[{r^3}\]
4. \[{r^2}\]
Answer
200.4k+ views
Hint: When the net force acting on the body is zero then the body moves with constant velocity and this velocity is called the terminal velocity. When a body is moving inside the fluid then the fluid offers viscous resistive force which tries to resist the motion of the body. At terminal velocity the resultant of the resistive force and the weight of the body is zero.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26
