
In an experiment to verify Stokes law, a small spherical ball of radius r and density falls under gravity through a distance h in the air before entering a tank of water. If the terminal velocity of the ball inside water is the same as its velocity just before entering the water surface, then the value of h is proportional to (ignore viscosity of air)
1. \[{r^4}\]
2. \[r\]
3. \[{r^3}\]
4. \[{r^2}\]
Answer
152.4k+ views
Hint: When the net force acting on the body is zero then the body moves with constant velocity and this velocity is called the terminal velocity. When a body is moving inside the fluid then the fluid offers viscous resistive force which tries to resist the motion of the body. At terminal velocity the resultant of the resistive force and the weight of the body is zero.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Which of the following is the smallest unit of length class 11 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Charging and Discharging of Capacitor

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
