
In an experiment to measure the speed of sound by a resonating air column, a tuning fork of frequency 500Hz is used. The length of the air column is varied by changing the water level in the resonance tube. Two successive resonances are heard at the air column with lengths 50.7 cm and 83.9 cm. Which of the following statements are true?
(This question has multiple answers)
Option A: the speed of sound determined from this experiment is $332m{s^{ - 1}}$
Option B: the end correction in this experiment is$0.9cm$.
Option C: wavelength of the sound is 66.4 cm.
Option D: the resonance at 50.7 cm corresponds to the fundamental harmonic.
Answer
127.5k+ views
Hint: When two longitudinal waves of same frequency travel through a medium in the opposite directions standing waves are produced.
Complete solution:
In an organ pipe column the sound behaves as a standing wave. The waves resonate harmonically.
There are two types of organ pipes;
Closed organ pipe: One end of the pipe is closed.
Open organ pipe: Both the ends are open.
In an air column filled with water, the conditions are the same as a closed organ pipe.
Hence, we can treat the situation as a closed organ pipe.
Now for standing waves in closed pipe the condition is given by;
$l = (2n + 1)\dfrac{\lambda }{4}$ (equation: 1)
Here l=length of air column, n= 0, 1, 2… $\lambda $=wavelength of the wave.
The diagram below will help you understand the situation

Now the above figure is just an example but not the actual case, as we do not know the number of harmonics.
Now, let us assume that the two successive harmonics at 50.7 and 83.9 cms be ${n_1}$ and ${n_2}$ respectively.
As the difference in length of two successive resonating air columns is half the wavelength of the wave,
$83.9 - 50.7 = \dfrac{\lambda }{2}$
Thus,$\lambda = 2 \times 33.2 = 66.4$
Hence, wavelength of sound is 66.4cm
Now as $\dfrac{\lambda }{4} = 16.6cm$, 50.7 is not the fundamental harmonic.
Also, as $\dfrac{{3\lambda }}{4} = 49.8 = e + 50.7cm$ (here, e is the end correction)
50.7 is the third harmonic and so 83.9 will be the fifth harmonic.
Now, $e = 49.8 - 50.7 = - 0.9cm$.
Hence the end correction is 0.9cm.
Now for the speed of sound $v = \lambda \upsilon $ ($\lambda $is the wavelength, $\upsilon $ is the frequency)
$v = 66.4 \times 500 = 33200cm{s^{ - 1}} = 332m{s^{ - 1}}$
Thus option A, option B and option C are correct.
Note:
(1) In the case of air columns, always consider some end correction.
(2) For organ pipe end correction may not be considered.
Complete solution:
In an organ pipe column the sound behaves as a standing wave. The waves resonate harmonically.
There are two types of organ pipes;
Closed organ pipe: One end of the pipe is closed.
Open organ pipe: Both the ends are open.
In an air column filled with water, the conditions are the same as a closed organ pipe.
Hence, we can treat the situation as a closed organ pipe.
Now for standing waves in closed pipe the condition is given by;
$l = (2n + 1)\dfrac{\lambda }{4}$ (equation: 1)
Here l=length of air column, n= 0, 1, 2… $\lambda $=wavelength of the wave.
The diagram below will help you understand the situation

Now the above figure is just an example but not the actual case, as we do not know the number of harmonics.
Now, let us assume that the two successive harmonics at 50.7 and 83.9 cms be ${n_1}$ and ${n_2}$ respectively.
As the difference in length of two successive resonating air columns is half the wavelength of the wave,
$83.9 - 50.7 = \dfrac{\lambda }{2}$
Thus,$\lambda = 2 \times 33.2 = 66.4$
Hence, wavelength of sound is 66.4cm
Now as $\dfrac{\lambda }{4} = 16.6cm$, 50.7 is not the fundamental harmonic.
Also, as $\dfrac{{3\lambda }}{4} = 49.8 = e + 50.7cm$ (here, e is the end correction)
50.7 is the third harmonic and so 83.9 will be the fifth harmonic.
Now, $e = 49.8 - 50.7 = - 0.9cm$.
Hence the end correction is 0.9cm.
Now for the speed of sound $v = \lambda \upsilon $ ($\lambda $is the wavelength, $\upsilon $ is the frequency)
$v = 66.4 \times 500 = 33200cm{s^{ - 1}} = 332m{s^{ - 1}}$
Thus option A, option B and option C are correct.
Note:
(1) In the case of air columns, always consider some end correction.
(2) For organ pipe end correction may not be considered.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic
