
In a standing wave formed as a result of reflection from a surface, the ratio of the amplitude at an antinode to that at node is x. The fraction of energy that is reflected is:
A. \[{\left[ {\dfrac{{x - 1}}{x}} \right]^2}\]
B. \[{\left[ {\dfrac{x}{{x + 1}}} \right]^2}\]
C. \[{\left[ {\dfrac{{x - 1}}{{x + 1}}} \right]^2}\]
D. \[{\left[ {\dfrac{1}{x}} \right]^2}\]
Answer
159.9k+ views
Hint: When two waves interfere then a stationary or standing wave is formed. In the question relation between the amplitude and x is given. As we know that the energy transported by any wave is directly proportional to the square of the amplitude. By using this concept, we can easily find the value for energy reflected.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
