
In a standing wave formed as a result of reflection from a surface, the ratio of the amplitude at an antinode to that at node is x. The fraction of energy that is reflected is:
A. \[{\left[ {\dfrac{{x - 1}}{x}} \right]^2}\]
B. \[{\left[ {\dfrac{x}{{x + 1}}} \right]^2}\]
C. \[{\left[ {\dfrac{{x - 1}}{{x + 1}}} \right]^2}\]
D. \[{\left[ {\dfrac{1}{x}} \right]^2}\]
Answer
180k+ views
Hint: When two waves interfere then a stationary or standing wave is formed. In the question relation between the amplitude and x is given. As we know that the energy transported by any wave is directly proportional to the square of the amplitude. By using this concept, we can easily find the value for energy reflected.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
