
If the units of \[ML\] are doubled, then the unit of kinetic energy will become:
(A) 8 times
(B) 16 times
(C) 4 times
(D) 2 times
Answer
159.3k+ views
Hint: We can recall the dimension of the kinetic energy of a body. If it exists, double the dimension \[M\] and \[L\], then compare to the original dimension.
Formula used: In this solution we will be using the following formulae;
\[KE = \dfrac{1}{2}m{v^2}\] where \[KE\] is the kinetic energy of a body, \[m\] is the mass of the body and \[v\] is the speed of the body.
Complete Step-by-Step solution:
The question explains us to find the unit of kinetic energy if the units of the M and L are doubled.
Now, to get the dimension of kinetic energy, we recall the formula which is given as
\[KE = \dfrac{1}{2}m{v^2}\] where \[KE\] is the kinetic energy of a body, \[m\] is the mass of the body and \[v\] is the speed of the body.
Hence, the dimension, which neglects constant, can be given as
\[\left[ {KE} \right] = M{L^2}{T^{ - 2}}\] where the bracket signifies dimension of…., \[M\] is the dimension of mass, \[L\] is the dimension of length and \[T\] is the dimension of time. m
Now, let us double the dimension M and L and let's call that \[K{E_2}\], hence,
\[\left[ {K{E_2}} \right] = 2M{\left( {2L} \right)^2}{T^{ - 2}}\]
By simplifying, we get
\[\left[ {K{E_2}} \right] = 2M\left( {4{L^2}} \right){T^{ - 2}} = 8ML{T^{ - 2}}\]
Hence, by comparing with first kinetic energy, we have
\[\left[ {K{E_2}} \right] = 8\left[ {KE} \right]\]
Hence, the kinetic energy becomes 8 times the initial one.
Thus, the correct option is A.
Note: For clarity, we can derive the dimension of kinetic energy as follows
From \[KE = \dfrac{1}{2}m{v^2}\]
The dimension of mass is simply \[M\]
Now, as known, velocity is distance over time or length over time, hence, the dimension will be \[\dfrac{L}{T} = L{T^{ - 1}}\]
Now, we square the velocity, hence we get
\[{\left( {L{T^{ - 1}}} \right)^2} = {L^2}{T^{ - 2}}\]
Then we multiply this by the dimension of mass
\[\left[ {KE} \right] = {L^2}{T^{ - 2}} \times M = M{L^2}{T^{ - 2}}\] just as written above.
The dimensions of constants are given as 1.
Formula used: In this solution we will be using the following formulae;
\[KE = \dfrac{1}{2}m{v^2}\] where \[KE\] is the kinetic energy of a body, \[m\] is the mass of the body and \[v\] is the speed of the body.
Complete Step-by-Step solution:
The question explains us to find the unit of kinetic energy if the units of the M and L are doubled.
Now, to get the dimension of kinetic energy, we recall the formula which is given as
\[KE = \dfrac{1}{2}m{v^2}\] where \[KE\] is the kinetic energy of a body, \[m\] is the mass of the body and \[v\] is the speed of the body.
Hence, the dimension, which neglects constant, can be given as
\[\left[ {KE} \right] = M{L^2}{T^{ - 2}}\] where the bracket signifies dimension of…., \[M\] is the dimension of mass, \[L\] is the dimension of length and \[T\] is the dimension of time. m
Now, let us double the dimension M and L and let's call that \[K{E_2}\], hence,
\[\left[ {K{E_2}} \right] = 2M{\left( {2L} \right)^2}{T^{ - 2}}\]
By simplifying, we get
\[\left[ {K{E_2}} \right] = 2M\left( {4{L^2}} \right){T^{ - 2}} = 8ML{T^{ - 2}}\]
Hence, by comparing with first kinetic energy, we have
\[\left[ {K{E_2}} \right] = 8\left[ {KE} \right]\]
Hence, the kinetic energy becomes 8 times the initial one.
Thus, the correct option is A.
Note: For clarity, we can derive the dimension of kinetic energy as follows
From \[KE = \dfrac{1}{2}m{v^2}\]
The dimension of mass is simply \[M\]
Now, as known, velocity is distance over time or length over time, hence, the dimension will be \[\dfrac{L}{T} = L{T^{ - 1}}\]
Now, we square the velocity, hence we get
\[{\left( {L{T^{ - 1}}} \right)^2} = {L^2}{T^{ - 2}}\]
Then we multiply this by the dimension of mass
\[\left[ {KE} \right] = {L^2}{T^{ - 2}} \times M = M{L^2}{T^{ - 2}}\] just as written above.
The dimensions of constants are given as 1.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Algebra Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
