
If the mean kinetic energy per unit volume of a gas is n times its pressure, then the value of n is
(A) 4.5
(B) 3.5
(C) 2.5
(D) 1.
Answer
169.8k+ views
Hint: Kinetic energy is mean when the velocity of the gas is in terms of \[{v_{rms}}\]. Pressure in terms of mean velocity is given by $P = \dfrac{{\rho {v^2}_{rms}}}{3}$. Now, mean kinetic energy per unit volume is n times pressure of the gas where value of n is 1.5.
Complete step by step answer:
Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}_{rms}$
Where, \[{v_{rms}}\] is the root mean square velocity.
Pressure with mean velocity is given by,
$P = \dfrac{{\rho {v^2}_{rms}}}{3}$
Substituting in place of mean velocity in terms of pressure
\[\rho \] is the density which can be written as mass by volume,
$\rho = \dfrac{m}{V}$
$K = \dfrac{1}{2} \times m \times \dfrac{{3P}}{\rho }$
Since mean kinetic energy is per unit volume \[V = 1\] .
\[\rho = m\]
\[
\dfrac{{{K_{mean}}}}{V} = \dfrac{{3PV}}{{2V}} \\
\dfrac{{{K_{mean}}}}{V} = \dfrac{3}{2}P \\
\]
Hence, Kinetic energy in terms of pressure is $K = \dfrac{3}{2}P$ that is 1.5 times the pressure.
Therefore, the correct option is D.
Note: We can solve this question by another method also. We know that the average velocity of a gas is nothing but \[{v_{rms}}\] which is equal to \[\dfrac{{3PV}}{m}\]. Substituting this equation in the equation for kinetic energy we get,
\[
{K_{mean}} = \dfrac{1}{2}m{v^2}_{rms} \\
{K_{mean}} = \dfrac{1}{2}xmx{(\sqrt {\dfrac{{3PV}}{m}} )^2} \\
{K_{mean}} = \dfrac{{3PV}}{2} \\
\]
This is the mean kinetic energy, to find energy per unit volume:
\[
\dfrac{{{K_{mean}}}}{V} = \dfrac{{3PV}}{{2V}} \\
\dfrac{{{K_{mean}}}}{V} = \dfrac{3}{2}P \\
\]
Complete step by step answer:
Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}_{rms}$
Where, \[{v_{rms}}\] is the root mean square velocity.
Pressure with mean velocity is given by,
$P = \dfrac{{\rho {v^2}_{rms}}}{3}$
Substituting in place of mean velocity in terms of pressure
\[\rho \] is the density which can be written as mass by volume,
$\rho = \dfrac{m}{V}$
$K = \dfrac{1}{2} \times m \times \dfrac{{3P}}{\rho }$
Since mean kinetic energy is per unit volume \[V = 1\] .
\[\rho = m\]
\[
\dfrac{{{K_{mean}}}}{V} = \dfrac{{3PV}}{{2V}} \\
\dfrac{{{K_{mean}}}}{V} = \dfrac{3}{2}P \\
\]
Hence, Kinetic energy in terms of pressure is $K = \dfrac{3}{2}P$ that is 1.5 times the pressure.
Therefore, the correct option is D.
Note: We can solve this question by another method also. We know that the average velocity of a gas is nothing but \[{v_{rms}}\] which is equal to \[\dfrac{{3PV}}{m}\]. Substituting this equation in the equation for kinetic energy we get,
\[
{K_{mean}} = \dfrac{1}{2}m{v^2}_{rms} \\
{K_{mean}} = \dfrac{1}{2}xmx{(\sqrt {\dfrac{{3PV}}{m}} )^2} \\
{K_{mean}} = \dfrac{{3PV}}{2} \\
\]
This is the mean kinetic energy, to find energy per unit volume:
\[
\dfrac{{{K_{mean}}}}{V} = \dfrac{{3PV}}{{2V}} \\
\dfrac{{{K_{mean}}}}{V} = \dfrac{3}{2}P \\
\]
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Instantaneous Velocity - Formula based Examples for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Other Pages
Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

The resultant of vec A and vec B is perpendicular to class 11 physics JEE_Main

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
