
If the displacement, velocity and acceleration of particle in SHM are \[1cm\] , \[1cm/\sec \] and \[1cm/{\sec ^2}\] respectively its time period (in secs) will be:
(A) \[\pi \]
(B) \[0.5\pi \]
(C) \[2\pi \]
(D) \[1.5\pi \]
Answer
179.4k+ views
Hint It is given that the particle undergoes Simple harmonic motion. So, use the equations of SHM to find the angular velocity of the object. And this using angular velocity, you can identify the time period.
Complete Step By Step Solution
In a simple harmonic motion, we consider the particle whose acceleration is pointed towards a fixed point and is proportional to the distance of the particle from the fixed point. When the particle moves away from the fixed point, the particle will slow down and stop at a point since the direction of acceleration is towards the fixed point, and will return back to the fixed point.
So, the general SHM equation for the acceleration of the particle is given as
\[a = {\omega ^2}x\]
Where \[\omega \]is the angular velocity of the object
Now, we know that x= \[1cm\] and a= \[1cm/{\sec ^2}\]
Substituting the value in the equation
\[1 = {\omega ^2} \times 1\]
\[\omega = 1rad/s\]
Now the time period is given as \[T = \dfrac{{2\pi }}{\omega }\] , where T is the time period of the object to undergo one oscillation or one harmonic motion.
Substituting \[\omega \] in the above equation, we get
\[T = \dfrac{{2\pi }}{1}\]
\[T = 2\pi \]
Thus the time period to undergo a simple harmonic motion of given acceleration and given displacement is calculated and found out to be \[2\pi \] .
Hence, Option (c) is the right answer for the given question.
Note
Simple Harmonic motion is the repetitive movement of a body of mass back and forth through an specified equilibrium so that the maximum displacement at one side of its position is equal to the maximum displacement on the other side. Oscillation of pendulum is one of the examples of SHM.
Complete Step By Step Solution
In a simple harmonic motion, we consider the particle whose acceleration is pointed towards a fixed point and is proportional to the distance of the particle from the fixed point. When the particle moves away from the fixed point, the particle will slow down and stop at a point since the direction of acceleration is towards the fixed point, and will return back to the fixed point.
So, the general SHM equation for the acceleration of the particle is given as
\[a = {\omega ^2}x\]
Where \[\omega \]is the angular velocity of the object
Now, we know that x= \[1cm\] and a= \[1cm/{\sec ^2}\]
Substituting the value in the equation
\[1 = {\omega ^2} \times 1\]
\[\omega = 1rad/s\]
Now the time period is given as \[T = \dfrac{{2\pi }}{\omega }\] , where T is the time period of the object to undergo one oscillation or one harmonic motion.
Substituting \[\omega \] in the above equation, we get
\[T = \dfrac{{2\pi }}{1}\]
\[T = 2\pi \]
Thus the time period to undergo a simple harmonic motion of given acceleration and given displacement is calculated and found out to be \[2\pi \] .
Hence, Option (c) is the right answer for the given question.
Note
Simple Harmonic motion is the repetitive movement of a body of mass back and forth through an specified equilibrium so that the maximum displacement at one side of its position is equal to the maximum displacement on the other side. Oscillation of pendulum is one of the examples of SHM.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
