Answer
Verified
114.9k+ views
Hint: Check the dimensions of the both sides of the given equations. The one which has dimensions on left hand and right hand equal will be the correct option.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Complete step by step solution:
We will solve this formula with the help of dimensional analysis . If a relation is correct, then the dimensions on the right hand side will be equal to the dimensions on the left hand side . All the physical quantities in physics can be expressed in terms of some sort of combinations of base quantities ( length, mass, time being the most common).
Dimensions of any quantity in physics are the powers to which the fundamental ( base) quantities can be raised to represent that quantity completely .
Now let us assume that given four quantities are dimensionally comparable and are related as follows :
$[\mu ] = {[e]^w}{[{a_0}]^x}{[h]^y}{[c]^z}$ ……….(i)
where $w,x,y,z$ are the powers of the to which these quantities are raised.
$
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = {[AT]^w}{[L]^x}{[M{L^2}{T^{ - 1}}]^y}{[L{T^{ - 1}}]^z} \\
[{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}] = [{M^y}{L^{x + 2y + z}}{T^{w - y - z}}{A^w}] \\
\\
$
Comparing both sides we get-
$
w = 2 \\
y = - 1 \\
$
$
x + 2y + z = - 2 \\
w - y - z = 4 \\
$
By solving above equations we get: $w = 2,x = 1,y = - 1,z = - 1$
Equation (i) now becomes –
$
[\mu ] = {[e]^2}{[{a_0}]^1}{[h]^{ - 1}}{[c]^{ - 1}} \\
\mu = \dfrac{{{e^2}{a_0}}}{{hc}} \\
$
We have got the answer.
Hence , the correct option is (D).
Note: We have to keep in mind that while writing dimensional formula we need to write it only in terms of fundamental units and not derived units. This will not work if instead we write the derived units.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
A solid sphere of radius r made of a soft material class 11 physics JEE_MAIN
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions