![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If the axis of rotation suddenly becomes tangent at equator of the earth then the periodic time of a geostationary satellite:
A) 48 hrs
B) 96 hrs
C) 24 hrs
D) 84 hrs
Answer
125.1k+ views
Hint : Since the moment of inertia of the system is changing, Use the conservation of angular momentum and find out the change in angular velocity. By finding change in angular velocity, you will be able to find the change in time period by using the formula $w = \dfrac{{2\pi }}{T}$.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Complete step-by-step answer:
Given, the axis of rotation is being changed from the centre to the tangent.
Let the initial moment of inertia be I.
Let the final moment of inertia be ${I_1}$.
Since the axis of rotation is being changed from centre to the tangent. Hence new moment of inertia by parallel axis theorem we have,
$
{I_1} = {I_{COM}} + m{d^2} \\
\Rightarrow {I_1} = \dfrac{2}{5}M{R^2} + M{R^2} \\
\Rightarrow {I_1} = \dfrac{7}{5}M{R^2} \\
$
Putting the value of I (COM) as we know that moment of inertia of a sphere is $\dfrac{2}{5}M{R^2}$ from the central axis.
Now using the conservation of angular momentum we have,
$L = {L_1}$
$
Iw = {I_1}{w_1} \\
\Rightarrow \dfrac{2}{5}M{R^2}\,w = \dfrac{7}{5}M{R^2}\,{w_1} \\
\Rightarrow {w_1} = \dfrac{2}{7}w \\
$ (putting the values)
Hence Time period becomes,
T = $\dfrac{{2\pi }}{{{w_1}}}$
$\Rightarrow$ T = $\dfrac{{2\pi }}{{\dfrac{2}{7}w}}$
$\Rightarrow$ T = 7 $\times \dfrac{{2\pi }}{w}$
$\Rightarrow$ T = 7 $\times$ 24 (Time period of earth = 24 hours)
$\Rightarrow$ T = 168 hr.
Note
i) We can only apply the law of conservation of angular momentum when there is no external torque acting on a body.
ii) Time period of a geostationary satellite is 24 hours.
Recently Updated Pages
JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Algebra Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
States of Matter Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Uniform Acceleration - Definition, Equation, Examples, and FAQs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)