If force \[F\] , acceleration \[a\] , and time \[T\] are taken as the fundamental physical quantities, the dimension of length on this system of units:
$\left( A \right)FA{T^2}$
$\left( B \right)FAT$
$\left( C \right)FT$
$\left( D \right)A{T^2}$
Answer
Verified
125.1k+ views
Hint: In the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. First equate the energy dimension with the dimension of force, acceleration, and time. Then, write the dimension of energy in terms of force, acceleration, and time.
Complete step by step solution:
The physical quantities are measured by these 3 systems that are the F.P.S system (foot, pound, second) C.G.S (centimeter, gram, second), and M.K.S(meter, kilogram, second).
In the CGS system, we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time.
The powers to which a physical quantity is raised is called the dimension of a physical quantity. They represent a physical quantity.
Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation. It determines relationships between different physical quantities. It can also find the unit of a given physical quantity.
The energy dimension,
$\Rightarrow E = K{F^a}{A^b}{T^c}$
Equating energy dimension with force, acceleration, and time.
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {ML{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^a}{L^{a + b}}{T^{ - 2a - 2b + c}}} \right]$
Now we get,
$\Rightarrow a = 1,a + b = 2 \Rightarrow b = 1$
$ \Rightarrow - 2a - 2b + c = - 2 \Rightarrow b = 1$
Hence,
$\Rightarrow E = KFA{T^2}$, K is a constant.
Hence option A is the correct option.
Note: The force which produces an acceleration $1c{m^2}$ in a body of mass of one gram, in its direction is called dyne. IN the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation.
Complete step by step solution:
The physical quantities are measured by these 3 systems that are the F.P.S system (foot, pound, second) C.G.S (centimeter, gram, second), and M.K.S(meter, kilogram, second).
In the CGS system, we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time.
The powers to which a physical quantity is raised is called the dimension of a physical quantity. They represent a physical quantity.
Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation. It determines relationships between different physical quantities. It can also find the unit of a given physical quantity.
The energy dimension,
$\Rightarrow E = K{F^a}{A^b}{T^c}$
Equating energy dimension with force, acceleration, and time.
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {ML{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$\Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^a}{L^{a + b}}{T^{ - 2a - 2b + c}}} \right]$
Now we get,
$\Rightarrow a = 1,a + b = 2 \Rightarrow b = 1$
$ \Rightarrow - 2a - 2b + c = - 2 \Rightarrow b = 1$
Hence,
$\Rightarrow E = KFA{T^2}$, K is a constant.
Hence option A is the correct option.
Note: The force which produces an acceleration $1c{m^2}$ in a body of mass of one gram, in its direction is called dyne. IN the CGS system we express gram as the unit of mass, centimeter as the unit of length, and the second as the unit of time. Dimensionless quantities are the quantities without a dimensional formula. It is used to find the correctness of an equation.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement