Find the current in wire AB
Answer
Verified
118.5k+ views
Hint: The wire AB in between connects all the 4 resistances. So by drawing the circuit in a simpler way, we can find the equivalent resistance. Then we can calculate the current being drawn from the cell using the emf of the call. This will be the current in the wire AB.
Formula Used In this solution, we are going to use the following formula,
${R_{eq}} = {R_1} + {R_2} + {R_3} + ....$ where ${R_{eq}}$ is the equivalent resistance when the resistances are placed in series.
And $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ....$ where ${R_{eq}}$ is the equivalent resistance when the resistances are placed in a parallel circuit.
$V = IR$ where $V$ is the emf of the cell, $I$ is the current in the wires and $R$ is the equivalent resistance.
Complete Step by Step Solution
To find the current in the wire AB we need to first redraw the circuit in a more simple way. Here the points A and B are the same point joined by a wire. So we can draw the circuit as,
From this circuit we can see that there are 2 parallel circuits consisting of 2 resistances each.
Let us first find the equivalent resistance between the points P and Q. The formula for parallel combination is
$\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ....$
Here we have ${R_1} = 12\Omega $ and ${R_2} = 6\Omega $
So substituting we get,
$\dfrac{1}{{{R_{eq1}}}} = \dfrac{1}{{12}} + \dfrac{1}{6}$
Taking LCM as 12
$\dfrac{1}{{{R_{eq1}}}} = \dfrac{{1 + 2}}{{12}}$
So by taking the reciprocal we get,
${R_{eq1}} = \dfrac{{12}}{3} = 4\Omega $
Similarly, between the points B and Q we have 2 resistances in parallel combination. So again here ${R_1} = 12\Omega $ and ${R_2} = 24\Omega $
Substituting we get,
$\dfrac{1}{{{R_{eq2}}}} = \dfrac{1}{{12}} + \dfrac{1}{{24}}$
Taking LCM as 24,
$\dfrac{1}{{{R_{eq2}}}} = \dfrac{{2 + 1}}{{24}}$
Taking the reciprocal we get,
${R_{eq2}} = \dfrac{{24}}{3} = 8\Omega $
Now the resistance ${R_{eq1}}$, ${R_{eq2}}$ and the internal resistance of the battery are in series in the circuit. So we use the formula for series combination given by,
${R_{eq}} = {R_1} + {R_2} + {R_3} + ....$
Here ${R_1} = {R_{eq1}} = 4\Omega $, ${R_2} = {R_{eq2}} = 8\Omega $ and ${R_3} = 2\Omega $
So we get,
${R_{eq}} = 4 + 8 + 2$
Therefore, we get the equivalent resistance as,
${R_{eq}} = 14\Omega $
Now it is given that the battery has an emf of $V = 42V$
So from the Ohm’s law $V = IR$, we can get the current as,
$I = \dfrac{V}{{{\operatorname{R} _{eq}}}}$
Substituting we get,
$I = \dfrac{{42}}{{14}} = 3A$
This is the whole current that is in the flowing through the wire. Now since between the points A and B the current doesn’t get divided, so the current in the wire AB will be $3A$.
Note: In the given circuit, when the two resistances are in series condition then the current that flows in them both is the same whereas when the resistances are in parallel, the potential difference is the same across the resistances but the current varies. So the current in the 2 wires between P and A are different and depends on the magnitude of the resistance.
Formula Used In this solution, we are going to use the following formula,
${R_{eq}} = {R_1} + {R_2} + {R_3} + ....$ where ${R_{eq}}$ is the equivalent resistance when the resistances are placed in series.
And $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ....$ where ${R_{eq}}$ is the equivalent resistance when the resistances are placed in a parallel circuit.
$V = IR$ where $V$ is the emf of the cell, $I$ is the current in the wires and $R$ is the equivalent resistance.
Complete Step by Step Solution
To find the current in the wire AB we need to first redraw the circuit in a more simple way. Here the points A and B are the same point joined by a wire. So we can draw the circuit as,
From this circuit we can see that there are 2 parallel circuits consisting of 2 resistances each.
Let us first find the equivalent resistance between the points P and Q. The formula for parallel combination is
$\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ....$
Here we have ${R_1} = 12\Omega $ and ${R_2} = 6\Omega $
So substituting we get,
$\dfrac{1}{{{R_{eq1}}}} = \dfrac{1}{{12}} + \dfrac{1}{6}$
Taking LCM as 12
$\dfrac{1}{{{R_{eq1}}}} = \dfrac{{1 + 2}}{{12}}$
So by taking the reciprocal we get,
${R_{eq1}} = \dfrac{{12}}{3} = 4\Omega $
Similarly, between the points B and Q we have 2 resistances in parallel combination. So again here ${R_1} = 12\Omega $ and ${R_2} = 24\Omega $
Substituting we get,
$\dfrac{1}{{{R_{eq2}}}} = \dfrac{1}{{12}} + \dfrac{1}{{24}}$
Taking LCM as 24,
$\dfrac{1}{{{R_{eq2}}}} = \dfrac{{2 + 1}}{{24}}$
Taking the reciprocal we get,
${R_{eq2}} = \dfrac{{24}}{3} = 8\Omega $
Now the resistance ${R_{eq1}}$, ${R_{eq2}}$ and the internal resistance of the battery are in series in the circuit. So we use the formula for series combination given by,
${R_{eq}} = {R_1} + {R_2} + {R_3} + ....$
Here ${R_1} = {R_{eq1}} = 4\Omega $, ${R_2} = {R_{eq2}} = 8\Omega $ and ${R_3} = 2\Omega $
So we get,
${R_{eq}} = 4 + 8 + 2$
Therefore, we get the equivalent resistance as,
${R_{eq}} = 14\Omega $
Now it is given that the battery has an emf of $V = 42V$
So from the Ohm’s law $V = IR$, we can get the current as,
$I = \dfrac{V}{{{\operatorname{R} _{eq}}}}$
Substituting we get,
$I = \dfrac{{42}}{{14}} = 3A$
This is the whole current that is in the flowing through the wire. Now since between the points A and B the current doesn’t get divided, so the current in the wire AB will be $3A$.
Note: In the given circuit, when the two resistances are in series condition then the current that flows in them both is the same whereas when the resistances are in parallel, the potential difference is the same across the resistances but the current varies. So the current in the 2 wires between P and A are different and depends on the magnitude of the resistance.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
NTA JEE Mains 2025 Correction window - Dates and Procedure
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)