
Electrons in a certain energy level \[n = {n_1}\] , can emit 3 spectral lines. When they are at another energy level, \[n = {n_2}\]. They can emit 6 spectral lines. The orbital speed of the electrons in the two orbits are in the ratio of
A. 4:3
B. 3:4
C. 2:1
D. 1:2
Answer
131.7k+ views
Hint:The electron jumps to the lower energy level by radiating out energy in the form of spectral lines. The number of spectral lines is proportional to the possible number of transitions made by the electron to reach the ground state.
Formula used:
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step by step solution:
When an electron is in nth state and jumps to the ground state then it releases energy in the form of radiation and emits the spectral lines. The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
It is given that when the electron is in the state \[n = {n_1}\] then it emits a total of 3 spectral lines.
Putting in the expression for the number of spectral lines emitted, we get
\[3 = \dfrac{{{n_1}\left( {{n_1} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_1^2 - {n_1} - 6 = 0\]
\[\Rightarrow n_1^2 - 3{n_1} + 2{n_1} - 6 = 0\]
\[\Rightarrow \left( {{n_1} - 3} \right)\left( {{n_1} + 2} \right) = 0\]
As the state of the electron is a positive whole number, so the value of \[{n_1}\] is 3.
Similarly for the state \[{n_2}\] the number of spectral lines emitted is 6. Putting in the expression for the number of spectral lines emitted, we get
\[6 = \dfrac{{{n_2}\left( {{n_2} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_2^2 - {n_2} - 12 = 0\]
\[\Rightarrow n_2^2 - 4{n_2} + 3{n_2} - 12 = 0\]
\[\Rightarrow \left( {{n_2} - 4} \right)\left( {{n_1} + 3} \right) = 0\]
Hence, the value of \[{n_2}\] is 4.
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
So, the ratio of the speeds of the electron in both the state is,
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\dfrac{{2\pi KZ{e^2}}}{{{n_1}h}}}}{{\dfrac{{2\pi KZ{e^2}}}{{{n_2}h}}}} \\ \]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{{n_2}}}{{{n_1}}} \\ \]
\[\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{4}{3}\]
Hence, the ratio of the speed of the electron in both the states is 4:3.
Therefore, the correct option is A.
Note: We must be careful while choosing the solution of the quadratic equation. As the principal quantum number is a positive whole number, we need to choose only the positive solution of the quadratic equation.
Formula used:
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step by step solution:
When an electron is in nth state and jumps to the ground state then it releases energy in the form of radiation and emits the spectral lines. The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
It is given that when the electron is in the state \[n = {n_1}\] then it emits a total of 3 spectral lines.
Putting in the expression for the number of spectral lines emitted, we get
\[3 = \dfrac{{{n_1}\left( {{n_1} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_1^2 - {n_1} - 6 = 0\]
\[\Rightarrow n_1^2 - 3{n_1} + 2{n_1} - 6 = 0\]
\[\Rightarrow \left( {{n_1} - 3} \right)\left( {{n_1} + 2} \right) = 0\]
As the state of the electron is a positive whole number, so the value of \[{n_1}\] is 3.
Similarly for the state \[{n_2}\] the number of spectral lines emitted is 6. Putting in the expression for the number of spectral lines emitted, we get
\[6 = \dfrac{{{n_2}\left( {{n_2} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_2^2 - {n_2} - 12 = 0\]
\[\Rightarrow n_2^2 - 4{n_2} + 3{n_2} - 12 = 0\]
\[\Rightarrow \left( {{n_2} - 4} \right)\left( {{n_1} + 3} \right) = 0\]
Hence, the value of \[{n_2}\] is 4.
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
So, the ratio of the speeds of the electron in both the state is,
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\dfrac{{2\pi KZ{e^2}}}{{{n_1}h}}}}{{\dfrac{{2\pi KZ{e^2}}}{{{n_2}h}}}} \\ \]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{{n_2}}}{{{n_1}}} \\ \]
\[\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{4}{3}\]
Hence, the ratio of the speed of the electron in both the states is 4:3.
Therefore, the correct option is A.
Note: We must be careful while choosing the solution of the quadratic equation. As the principal quantum number is a positive whole number, we need to choose only the positive solution of the quadratic equation.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
