
What is the dimension of young’s modulus of elasticity?
(A) \[[M{L^{ - 1}}{T^{ - 2}}]\]
(B) \[[ML{T^{ - 2}}]\]
(C) \[[ML{T^{ - 1}}]\]
(D) None of these
Answer
163.2k+ views
Hint: Young’s modulus is defined as the ratio of stress to strain. Stress is forced by area and strain is a dimensionless quantity. Hence when substituted the Young’s modulus has the dimensions of stress.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
