
Derivation of the second equation of motion is:
\[\left( a \right)\] $d\theta = wd2t$
$\left( b \right)$ $d\theta = wdt$
$\left( c \right)$ $d\theta = wd3t$
$\left( d \right)$ $d\theta = wd{t^2}$
Answer
144.6k+ views
Hint We know that the product of the velocity and the time will be equal to the displacement of the body. If velocity is not constant that is we can say that velocity keeps on increasing or decreasing. By using the formula for the displacement $s = ut + \dfrac{1}{2}a{t^2}$we will be able to find the relation between them.
Formula used:
Displacement,
$s = ut + \dfrac{1}{2}a{t^2}$
Here,
$s$, will be the displacement
$u$, will be the initial velocity
$a$, will be the acceleration
$t$, will be the temperature
Complete Step By Step Solution So as know displacement will be equal to the
Displacement, $s = ut + \dfrac{1}{2}a{t^2}$
By using the above equation and converting the units as-
$s$ as$\theta $, $u$as ${w_0}$and $a$as $\alpha $
We get the equation as,
\[\theta = {w_0}t + \dfrac{1}{2}\alpha {t^2}\]
Now differentiating the above equation with respect to time,
We get
$ \Rightarrow \dfrac{{d\theta }}{{dt}} = w$
Now by taking the $dt$ right side of the equation,
We get
$ \therefore d\theta = wdt$
Therefore the option $B$ will be the correct option.
Additional information
The equations of motion are simple equations that describe the state of motion of a point object, provided the acceleration is constant throughout the motion. The capacities are characterized in Euclidean space in old-style mechanics, yet are supplanted by bent spaces in relativity.
There are two descriptions of motion: Kinematics and Dynamics. Kinematics deals with motion where the force is not taken into account. Dynamics considers force and energy.
Now, coming to Kinematics, the equations of motion are:
$ \bullet $ ${v^2} - {u^2} = 2as$
$ \bullet $ $s = ut + \dfrac{1}{2}a{t^2}$
$ \bullet $ $v = u + at$
Note Motion is a movement with velocity and acceleration. In material science, movement is an adjustment in the position of an article over the long haul. Movement is depicted regarding relocation, separation, speed, quickening, time, and speed.
Speed, being a scalar, is the rate at which an article covers separation concerning time. The normal speed is the separation as for time (a scalar amount) proportion. Speed is oblivious of bearing.
Formula used:
Displacement,
$s = ut + \dfrac{1}{2}a{t^2}$
Here,
$s$, will be the displacement
$u$, will be the initial velocity
$a$, will be the acceleration
$t$, will be the temperature
Complete Step By Step Solution So as know displacement will be equal to the
Displacement, $s = ut + \dfrac{1}{2}a{t^2}$
By using the above equation and converting the units as-
$s$ as$\theta $, $u$as ${w_0}$and $a$as $\alpha $
We get the equation as,
\[\theta = {w_0}t + \dfrac{1}{2}\alpha {t^2}\]
Now differentiating the above equation with respect to time,
We get
$ \Rightarrow \dfrac{{d\theta }}{{dt}} = w$
Now by taking the $dt$ right side of the equation,
We get
$ \therefore d\theta = wdt$
Therefore the option $B$ will be the correct option.
Additional information
The equations of motion are simple equations that describe the state of motion of a point object, provided the acceleration is constant throughout the motion. The capacities are characterized in Euclidean space in old-style mechanics, yet are supplanted by bent spaces in relativity.
There are two descriptions of motion: Kinematics and Dynamics. Kinematics deals with motion where the force is not taken into account. Dynamics considers force and energy.
Now, coming to Kinematics, the equations of motion are:
$ \bullet $ ${v^2} - {u^2} = 2as$
$ \bullet $ $s = ut + \dfrac{1}{2}a{t^2}$
$ \bullet $ $v = u + at$
Note Motion is a movement with velocity and acceleration. In material science, movement is an adjustment in the position of an article over the long haul. Movement is depicted regarding relocation, separation, speed, quickening, time, and speed.
Speed, being a scalar, is the rate at which an article covers separation concerning time. The normal speed is the separation as for time (a scalar amount) proportion. Speed is oblivious of bearing.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
