
What is the conclusion of Davison and Germer experiment on the nature of electrons?
Answer
163.2k+ views
Hint: The electron exhibits the particle mature as well as wave nature. The Davisson-Germer experiment validates the earlier hypothesis given by De-Broglie about the wave nature of electrons.
Complete step by step solution:
According to the conclusion obtained by Davisson-Germer experiment it was shown that electrons exhibit wave nature too. This conclusion supports the hypothesis given by De-Broglie regarding wave-particle duality of matter.
In this experiment the accelerated electron beam was bombarded on a Nickel crystal in vacuum from the electron gun. The electron gun is having a heated filament. Thus electrons were scattered and Bragg's law gave the angle of maximum scattering.
According to Bragg's law he states that when the x-ray is incident onto a crystal surface, its angle of incidence $\theta $, will reflect back with the same angle of scattering, $\theta $. And, when the path difference $\Delta x$ is equal to a whole number multiple of wavelength, constructive interference will occur.
$n\lambda =2d\sin \theta $
Therefore, according to the derivation of Bragg’s Law:
The equation explains the reason for reflection: X-ray beams from the Nickel crystals at particular angles of incidence.
In Bragg's equation, variable $d$ indicates the distance between the atomic layers of Nickel, and the variable $\lambda $ specifies the wavelength of the incident electron beam.
$n$ is an integer.
Note: Bragg was also awarded the Nobel Prize in Physics in 1915 for his contribution in the analysis of crystal structure using X-rays.
Diffraction has been developed to understand the structure of every state of matter by any beam like a beam of ions, protons, electrons, neutrons with a wavelength similar to the length between the molecular structures. And this diffraction gives the idea of duality in nature for electrons.
Complete step by step solution:
According to the conclusion obtained by Davisson-Germer experiment it was shown that electrons exhibit wave nature too. This conclusion supports the hypothesis given by De-Broglie regarding wave-particle duality of matter.
In this experiment the accelerated electron beam was bombarded on a Nickel crystal in vacuum from the electron gun. The electron gun is having a heated filament. Thus electrons were scattered and Bragg's law gave the angle of maximum scattering.
According to Bragg's law he states that when the x-ray is incident onto a crystal surface, its angle of incidence $\theta $, will reflect back with the same angle of scattering, $\theta $. And, when the path difference $\Delta x$ is equal to a whole number multiple of wavelength, constructive interference will occur.
$n\lambda =2d\sin \theta $
Therefore, according to the derivation of Bragg’s Law:
The equation explains the reason for reflection: X-ray beams from the Nickel crystals at particular angles of incidence.
In Bragg's equation, variable $d$ indicates the distance between the atomic layers of Nickel, and the variable $\lambda $ specifies the wavelength of the incident electron beam.
$n$ is an integer.
Note: Bragg was also awarded the Nobel Prize in Physics in 1915 for his contribution in the analysis of crystal structure using X-rays.
Diffraction has been developed to understand the structure of every state of matter by any beam like a beam of ions, protons, electrons, neutrons with a wavelength similar to the length between the molecular structures. And this diffraction gives the idea of duality in nature for electrons.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
