
Assuming the coefficient of friction between the road and tires of a car to be 0.5, the maximum speed with which the car can move around a curve of 40.0m radius without slipping if the road is unbanked, should be
A. 25m/s
B. 19m/s
C. 14m/s
D. 11m/s
Answer
139.8k+ views
Hint: The practise of banking roads allows a car to travel around a curved track at a decent speed without skidding by lifting the outer edge of the curved road above the inner edge. To, solve this question we need to remember the concept of banking of road and the relation between the maximum velocity and coefficient of friction, which is given by ${{v}_{\max }}=\sqrt{\mu Rg}$
Formula used:
${{v}_{\max }}=\sqrt{\mu Rg}$
Where v is the velocity, R is the radius and $\mu $is the coefficient of friction and g is the acceleration due to gravity.
Complete answer:
We’ll start by equating all the forces and by trying to keep the body in equilibrium as shown in the diagram below:

Let’s balance all the forces along the x axis
$f\cos \theta +N\sin \theta =\dfrac{m{{v}^{2}}}{R}$
We will now substitute $f=\mu N$ in the above equation we get,
$\mu N\cos \theta +N\sin \theta =\dfrac{m{{v}^{2}}}{R}$
$\mu (\cos \theta +\sin \theta )=\dfrac{m{{v}^{2}}}{R}$…….. (i)
Now similarly let’s balance all the forces along y axis
$N\cos \theta =f\sin \theta +mg$
$\Rightarrow N\cos \theta =\mu N\sin \theta +mg$
$\Rightarrow N(\cos \theta -\mu \sin \theta )=mg$…… (ii)
And frictional force Frictional force,$f=\mu N$.….. (iii)
Now we will divide the equation (i) by (ii), we get
$\dfrac{{{v}^{2}}}{Rg}=\dfrac{(\mu +\tan \theta )}{(1-\mu \tan \theta )}$
$\Rightarrow v=\sqrt{\dfrac{Rg(\mu +\tan \theta )}{(1-\mu \tan \theta )}}$.
For maximum velocity the road is unbanked,$\theta =0{}^\circ $
Therefore, ${{v}_{\max }}=\sqrt{\mu Rg}$
Now, in the given question we need to find v.
Given value of$R=40.0m$, $\mu =0.5$,$g=10m/{{s}^{2}}$.
Putting the value in ${{v}_{\max }}=\sqrt{\mu Rg}$.
We get,
$v=\sqrt{40\times 0.5\times 10}$
$\Rightarrow v=14.14m/s\approx 14m/s$
Hence, the correct option is C. 14m/s
Note: Students should fully grasp the idea of road banking because doing so will improve their ability to solve mechanical problems. Students should remember that prior knowledge of frictional force and centripetal force will help them better understand the idea of road banking.
Formula used:
${{v}_{\max }}=\sqrt{\mu Rg}$
Where v is the velocity, R is the radius and $\mu $is the coefficient of friction and g is the acceleration due to gravity.
Complete answer:
We’ll start by equating all the forces and by trying to keep the body in equilibrium as shown in the diagram below:

Let’s balance all the forces along the x axis
$f\cos \theta +N\sin \theta =\dfrac{m{{v}^{2}}}{R}$
We will now substitute $f=\mu N$ in the above equation we get,
$\mu N\cos \theta +N\sin \theta =\dfrac{m{{v}^{2}}}{R}$
$\mu (\cos \theta +\sin \theta )=\dfrac{m{{v}^{2}}}{R}$…….. (i)
Now similarly let’s balance all the forces along y axis
$N\cos \theta =f\sin \theta +mg$
$\Rightarrow N\cos \theta =\mu N\sin \theta +mg$
$\Rightarrow N(\cos \theta -\mu \sin \theta )=mg$…… (ii)
And frictional force Frictional force,$f=\mu N$.….. (iii)
Now we will divide the equation (i) by (ii), we get
$\dfrac{{{v}^{2}}}{Rg}=\dfrac{(\mu +\tan \theta )}{(1-\mu \tan \theta )}$
$\Rightarrow v=\sqrt{\dfrac{Rg(\mu +\tan \theta )}{(1-\mu \tan \theta )}}$.
For maximum velocity the road is unbanked,$\theta =0{}^\circ $
Therefore, ${{v}_{\max }}=\sqrt{\mu Rg}$
Now, in the given question we need to find v.
Given value of$R=40.0m$, $\mu =0.5$,$g=10m/{{s}^{2}}$.
Putting the value in ${{v}_{\max }}=\sqrt{\mu Rg}$.
We get,
$v=\sqrt{40\times 0.5\times 10}$
$\Rightarrow v=14.14m/s\approx 14m/s$
Hence, the correct option is C. 14m/s
Note: Students should fully grasp the idea of road banking because doing so will improve their ability to solve mechanical problems. Students should remember that prior knowledge of frictional force and centripetal force will help them better understand the idea of road banking.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
