![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Assertion (A) : A null vector is a vector whose magnitude is zero and direction is arbitrary
Reason(R) : A null vector does not exist
(A) Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true, but R is not the correct explanation of A.
(C) A is true but R is False.
(D) A is False but R is true.
Answer
125.1k+ views
Hint:
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)