Answer
Verified
114.6k+ views
Hint:
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
A solid sphere of radius r made of a soft material class 11 physics JEE_MAIN
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions