
An ideal heat engine exhausting heat at $77{}^\circ C$ is to have a 30% efficiency. It must take heat at
A) $127{}^\circ C$
B) $227{}^\circ C$
C) $327{}^\circ C$
D) $673{}^\circ C$
Answer
139.8k+ views
Hint: Efficiency is the ratio of work done and heat taken to do that work. We have a direct equation for efficiency in terms of temperature of source and sink. Here temperature of sink and efficiency is given. We just need to substitute the values in the equation to found out the temperature of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
