
An electron and a photon, each has a de-Broglie wavelength of $1.2A°$. The ratio of their energies will be:
A) $1:1$
B) $1:10$
C) $1:100$
D) $1:1000$
Answer
127.5k+ views
Hint: The de-Broglie equation states that a matter can act as waves as well as particles same as that of light and radiation. Every moving particle has a wavelength. This equation is one of the important equations that is used to define the properties of matter.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
