Answer
Verified
114.6k+ views
Hint:As we know, the same charges repel each other and opposite charges attract each other. As we know that for a positive charge( +q) the direction of the electric force is in the direction of the electric field and for a negative charge (–q) the direction of the electric force is in the opposite direction of the electric field.
Formula used:
Force on the dipole is given as,
\[F = (p \cdot \nabla )E\]
Where p is the dipole moment and E is the electric field.
Torque is given by,
\[\tau = \overrightarrow p \times \overrightarrow E \]
Complete step by step solution:
As the electric field is non-uniform. So the magnitude of forces is not equal as it depends on the strength of the electric field. Therefore net force is not equal to zero. Force on the dipole is:
\[F = (p \cdot \nabla )E\]
Here the electric field is not always equal to zero i.e. \[E \ne 0\]
As torque is given by,
\[\tau = \overrightarrow p \times \overrightarrow E = pE\sin \theta \]
If the dipole moment and electric field are parallel then \[\theta = {0^0}\]. Now we have,
\[\begin{array}{l}\tau = pE\sin \theta \\ \Rightarrow \tau {\rm{ = pEsin}}{{\rm{0}}^0}\\ \Rightarrow \tau {\rm{ = 0}}\end{array}\]
Here the torque is zero. Hence if the dipole moment and electric field are parallel to each other then the torque may be zero. Therefore we concluded that if an electric dipole is placed in an electric field generated by a point charge then the torque on the dipole due to the field may be zero.
Hence option D is the correct answer.
Note: The dipole moment is a vector quantity with a magnitude equal to the product of charge and the distance between them and a direction will be from the negative charge to the positive charge. The torque can be measured as the cross product of dipole moments and the force acting on the dipole.
Formula used:
Force on the dipole is given as,
\[F = (p \cdot \nabla )E\]
Where p is the dipole moment and E is the electric field.
Torque is given by,
\[\tau = \overrightarrow p \times \overrightarrow E \]
Complete step by step solution:
As the electric field is non-uniform. So the magnitude of forces is not equal as it depends on the strength of the electric field. Therefore net force is not equal to zero. Force on the dipole is:
\[F = (p \cdot \nabla )E\]
Here the electric field is not always equal to zero i.e. \[E \ne 0\]
As torque is given by,
\[\tau = \overrightarrow p \times \overrightarrow E = pE\sin \theta \]
If the dipole moment and electric field are parallel then \[\theta = {0^0}\]. Now we have,
\[\begin{array}{l}\tau = pE\sin \theta \\ \Rightarrow \tau {\rm{ = pEsin}}{{\rm{0}}^0}\\ \Rightarrow \tau {\rm{ = 0}}\end{array}\]
Here the torque is zero. Hence if the dipole moment and electric field are parallel to each other then the torque may be zero. Therefore we concluded that if an electric dipole is placed in an electric field generated by a point charge then the torque on the dipole due to the field may be zero.
Hence option D is the correct answer.
Note: The dipole moment is a vector quantity with a magnitude equal to the product of charge and the distance between them and a direction will be from the negative charge to the positive charge. The torque can be measured as the cross product of dipole moments and the force acting on the dipole.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main