
What Is Acceleration Due To Gravity On Jupiter?
Answer
233.1k+ views
Hint:The universal gravitational constant is related to the attractive gravitational force between two bodies separated by a distance r. The acceleration due to gravity on earth is the acceleration experienced by anybody during free fall due to the attractive gravitational force of the earth's surface. It is not a universal constant. On earth, it is usually taken to be \[9.8{\rm{ }}m{s^{ - 2}}\].
Formula used:
Gravitational Force,
\[F = GMm/{r^2}\]
Where G = universal gravitational constant.
M= mass of the planet (earth)
m = mass of the lighter object
r = distance between the two objects
Acceleration due to gravity,
\[g = GM/{r^2}\]
where M= mass of the planet (earth)
r = radius of the planet
Complete step by step solution:
Given: mass of Jupiter = 319 times the mass of earth
Radius of Jupiter = 11.2 times the radius of earth
From Newton’s law of gravitation,
Force, \[F = GMm/{r^2}\]----- (1)
where G= universal gravitational constant = \[6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
Also, from Newton’s third law of motion,
\[F = mg\]------ (2)
where g = acceleration due to gravity on earth = \[9.8{\rm{ }}m{s^{ - 2}}\]
Equating (1) and (2)
\[g = GM/{r^2}\]------ (3)
Let \[\]\[M\], \[r\], \[{M_j}\] and \[{r_j}\] be masses and radii of earth and Jupiter respectively. Then according to the question,
\[{M_j} = 319M\]--(4) and \[{r_j} = 11.2r\]--- (5)
Using equation (3) to calculate \[{g_j}\]= acceleration due to gravity on Jupiter,
\[{g_j} = G{M_j}/{r^2}_j\]---- (6)
Substituting equations (4) and (5) in (6), we get,
\[{g_j} = G \times 319M/{(11.2r)^2}\]
\[\Rightarrow{g_j} = 2.54g\]
\[\Rightarrow {g_j} = 2.54 \times 9.8\]
\[\therefore {g_j} = 24.58\,m{s^{ - 2}}\]
Hence the acceleration due to gravity on Jupiter is \[{g_j} = 24.58\,m{s^{ - 2}}\].
Note: Although acceleration due to gravity is a constant, it is not a universal constant like universal gravitational constant, G. It varies on earth with change in reference surface such as when measured on a mountain or in the depths of water bodies like seas and oceans.
Formula used:
Gravitational Force,
\[F = GMm/{r^2}\]
Where G = universal gravitational constant.
M= mass of the planet (earth)
m = mass of the lighter object
r = distance between the two objects
Acceleration due to gravity,
\[g = GM/{r^2}\]
where M= mass of the planet (earth)
r = radius of the planet
Complete step by step solution:
Given: mass of Jupiter = 319 times the mass of earth
Radius of Jupiter = 11.2 times the radius of earth
From Newton’s law of gravitation,
Force, \[F = GMm/{r^2}\]----- (1)
where G= universal gravitational constant = \[6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
Also, from Newton’s third law of motion,
\[F = mg\]------ (2)
where g = acceleration due to gravity on earth = \[9.8{\rm{ }}m{s^{ - 2}}\]
Equating (1) and (2)
\[g = GM/{r^2}\]------ (3)
Let \[\]\[M\], \[r\], \[{M_j}\] and \[{r_j}\] be masses and radii of earth and Jupiter respectively. Then according to the question,
\[{M_j} = 319M\]--(4) and \[{r_j} = 11.2r\]--- (5)
Using equation (3) to calculate \[{g_j}\]= acceleration due to gravity on Jupiter,
\[{g_j} = G{M_j}/{r^2}_j\]---- (6)
Substituting equations (4) and (5) in (6), we get,
\[{g_j} = G \times 319M/{(11.2r)^2}\]
\[\Rightarrow{g_j} = 2.54g\]
\[\Rightarrow {g_j} = 2.54 \times 9.8\]
\[\therefore {g_j} = 24.58\,m{s^{ - 2}}\]
Hence the acceleration due to gravity on Jupiter is \[{g_j} = 24.58\,m{s^{ - 2}}\].
Note: Although acceleration due to gravity is a constant, it is not a universal constant like universal gravitational constant, G. It varies on earth with change in reference surface such as when measured on a mountain or in the depths of water bodies like seas and oceans.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

