
A wave travelling along a string is described by, y(x,t)=0.005sin(80.0x-3.0t), in which the numerical constants are in SI units \[(0.005{\rm{ m, 80}}{\rm{.0 rad }}{{\rm{m}}^{ - 1}}{\rm{ and 3}}{\rm{.0 rad }}{{\rm{s}}^{ - 1}})\]. Calculate: (a) the amplitude (b) the wavelength (c) the period and frequency of the wave. Also, calculate the displacement y of the wave at a distance x = 30.0 cm and time t = 20 s?
Answer
165.9k+ views
Hint: To solve this question we can compare the given travelling wave equation with the general form of the equation. After comparing we get the values for the related terms of the equation.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Combination of Capacitors - In Parallel and Series for JEE

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
