
A wave of frequency \[{\rm{500Hz}}\] has a velocity of \[{\rm{360m}}{{\rm{s}}^{{\rm{ - 1}}}}\]. Calculate the distance between two points that are \[{60^0}\] out of phase.
A. 12 cm
B. 18 cm
C. 17 cm
D. 25 cm
Answer
220.2k+ views
Hint:To proceed with the problem, let’s see what the path difference and phase difference say. The distance travelled by the two waves from their respective sources to a given point on the pattern is known as path difference. The phase difference is defined as the difference in phase angle between two waves. Now we can solve the problem by considering the definitions.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Charging and Discharging of Capacitors

Understanding Geostationary and Geosynchronous Satellites

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

