
A uniform electric field and a uniform magnetic field exist in a region in the same direction. An electron is projected with velocity pointed in the same direction the electron will:
A) Turn to its right
B) Turn to its left
C) Keep moving in the same direction but its speed will increase
D) Keep moving in the same direction but its speed will decrease
Answer
168k+ views
Hint: Recall that the electric field is the region around a charged particle or any object having charge within which its influence can be felt. In other words, this charged particle will have an effect on the objects in the surrounding area. Similarly a magnetic field is the space around a magnet where its influence can be felt.
Complete solution:
Step I: Force due to magnetic field is given by using the formula$ = q(\overrightarrow V \times \overrightarrow B )$
Since velocity and field are in the same direction, so the angle between them is zero.
The cross product of two vectors can be written as$ = qVB\sin 0$
$\therefore $force due to the magnetic field will also be equal to zero.
$ \Rightarrow {F_B} = 0$
Step II: Force due to electric field is given by the formula ${F_E} = qE$.
Since electrons have a negative charge, the direction of force will be opposite to that of the direction of the electric field. The force will be then written as
$ \Rightarrow {F_E} = - qE$
Since the force due to the magnetic field is zero, the electron will be moving only under the influence of the electric field. So, the electron will be moving in the same direction but its speed will decrease.
Option D is the correct answer.
Note: It is important to remember the electric field and the magnetic field and the electric field exist simultaneously. This means a changing electric field creates a magnetic field and a changing magnetic field creates an electric field. Electricity and magnetism are phenomena related to each other and are related in a field called electromagnetic field.
Complete solution:
Step I: Force due to magnetic field is given by using the formula$ = q(\overrightarrow V \times \overrightarrow B )$
Since velocity and field are in the same direction, so the angle between them is zero.
The cross product of two vectors can be written as$ = qVB\sin 0$
$\therefore $force due to the magnetic field will also be equal to zero.
$ \Rightarrow {F_B} = 0$
Step II: Force due to electric field is given by the formula ${F_E} = qE$.
Since electrons have a negative charge, the direction of force will be opposite to that of the direction of the electric field. The force will be then written as
$ \Rightarrow {F_E} = - qE$
Since the force due to the magnetic field is zero, the electron will be moving only under the influence of the electric field. So, the electron will be moving in the same direction but its speed will decrease.
Option D is the correct answer.
Note: It is important to remember the electric field and the magnetic field and the electric field exist simultaneously. This means a changing electric field creates a magnetic field and a changing magnetic field creates an electric field. Electricity and magnetism are phenomena related to each other and are related in a field called electromagnetic field.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Transistor as Amplifier: Working, Diagram, Uses & Questions

Moving Charges and Magnetism: Laws, Formulas & Applications

Environmental Chemistry Chapter for JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Wheatstone Bridge for JEE Main Physics 2025
