
A spring having a spring constant K is loaded with a mass m. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is
A. \[\dfrac{k}{2}\]
B. k
C. 2k
D. \[{k^2}\]
Answer
164.7k+ views
Hint: Spring constant of a spring is inversely proportional to the length of the spring and will be the same for both halves of the spring.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
