
A spaceship in space sweeps stationary interplanetary dust. As a result, its mass increases at a rate \[\dfrac{{\left[ {{\rm{dM}}\left( {\rm{t}} \right)} \right]}}{{{\rm{dt}}}} = {\rm{d}}{{\rm{v}}^2}({\rm{t}})\], where ${\rm{v}}\left( {\rm{t}} \right)$ is its instantaneous velocity. The instantaneous acceleration of the satellite is:
(a) $ - {\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)$
(b) $\dfrac{{ - 2{\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)}}{{{\rm{M}}\left( {\rm{t}} \right)}}$
(c)$\dfrac{{ - {\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)}}{{{\rm{M}}\left( {\rm{t}} \right)}}$
(d) $\dfrac{{ - 2{\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)}}{{{\rm{2M}}\left( {\rm{t}} \right)}}$
Answer
232.8k+ views
Hint: Force is an external agent that has the power to alter a body's resting or moving position. It has a direction and a magnitude. The direction of the force is referred to as the force's direction, and the point of application is where the force is exerted. We also need to determine the satellite's current instantaneous acceleration.
Formula used:
${\rm{F}} = {\rm{ma}}$
Complete answer:
According to the question \[\dfrac{{\left[ {{\rm{dM}}\left( {\rm{t}} \right)} \right]}}{{{\rm{dt}}}} = {\rm{d}}{{\rm{v}}^2}({\rm{t}})\] is the rate at which mass increases and instantaneous velocity is ${\rm{v}}\left( {\rm{t}} \right)$.
As we know that force is the product of mass and acceleration. We know that from the second law of motion as the object goes above the mass decreases so applying Newton’s second law of motion we can say that,
$F = \dfrac{{dp}}{{dt}} = \dfrac{d}{{dt}}\left( {Mv} \right)$
After differentiation
$F = M\dfrac{{dv}}{{dt}} + v\dfrac{{dM}}{{dt}}$
As the satellite will go above the thrust will be got canceled by force, therefore $F = 0$
$\begin{array}{c}
- M\dfrac{{dv}}{{dt}} = v\dfrac{{dM}}{{dt}}\\
- Ma = v\dfrac{{dM}}{{dt}}\\
a = \dfrac{{v\left( {b{v^2}} \right)}}{M} = \dfrac{{ - {\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)}}{{{\rm{M}}\left( {\rm{t}} \right)}}
\end{array}$
Hence option (c) is the correct option.
Note: The acceleration of an item caused by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object, according to Newton's second law of motion. The same method used to calculate instantaneous velocity can also be used to calculate instantaneous acceleration or acceleration at a single moment in time.
Formula used:
${\rm{F}} = {\rm{ma}}$
Complete answer:
According to the question \[\dfrac{{\left[ {{\rm{dM}}\left( {\rm{t}} \right)} \right]}}{{{\rm{dt}}}} = {\rm{d}}{{\rm{v}}^2}({\rm{t}})\] is the rate at which mass increases and instantaneous velocity is ${\rm{v}}\left( {\rm{t}} \right)$.
As we know that force is the product of mass and acceleration. We know that from the second law of motion as the object goes above the mass decreases so applying Newton’s second law of motion we can say that,
$F = \dfrac{{dp}}{{dt}} = \dfrac{d}{{dt}}\left( {Mv} \right)$
After differentiation
$F = M\dfrac{{dv}}{{dt}} + v\dfrac{{dM}}{{dt}}$
As the satellite will go above the thrust will be got canceled by force, therefore $F = 0$
$\begin{array}{c}
- M\dfrac{{dv}}{{dt}} = v\dfrac{{dM}}{{dt}}\\
- Ma = v\dfrac{{dM}}{{dt}}\\
a = \dfrac{{v\left( {b{v^2}} \right)}}{M} = \dfrac{{ - {\rm{b}}{{\rm{v}}^3}\left( {\rm{t}} \right)}}{{{\rm{M}}\left( {\rm{t}} \right)}}
\end{array}$
Hence option (c) is the correct option.
Note: The acceleration of an item caused by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object, according to Newton's second law of motion. The same method used to calculate instantaneous velocity can also be used to calculate instantaneous acceleration or acceleration at a single moment in time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

