
A source producing the sound of frequency 170 Hz is approaching a stationary observer with a velocity of 17 m/s. The apparent change in the wavelength of sound heard by the observer is (speed of sound in air = 340 m/s)
A. 0.1m
B. 0.2m
C. 0.4m
D. 0.5m
Answer
189.6k+ views
Hint:To find the apparent change in wavelength, we find the apparent change in the frequency due to Doppler effect and then using the relation between the wave speed, frequency and the wavelength, we get the apparent change in wavelength of the sound.
Formula used:
\[{f_{ap}} = {f_o}\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)\]
where \[{f_{ap}}\] is the apparent frequency heard by the listener moving with speed \[{v_o}\] with respect to the source which is moving with speed \[{v_s}\], \[{f_o}\] is the original frequency and v is the speed of sound in air.
\[v = f\lambda \]
where v is the speed of the wave, f is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
Complete step by step solution:
It is given that the source of the sound is approaching towards the stationary observer.
The Doppler Effect formula for the sound source moving towards the stationary observer is,
\[{f_{ap}} = {f_o}\left( {\dfrac{v}{{v - {v_s}}}} \right)\]
The speed of sound, v is given as 340 m/s and the original frequency is given as 170 Hz.
So, the apparent frequency is,
\[{f_{ap}} = \left( {170\,Hz} \right)\left( {\dfrac{{340}}{{340 - 17}}} \right) \\ \]
\[\Rightarrow {f_{ap}} = 170 \times \dfrac{{340}}{{323}}Hz \\ \]
\[\Rightarrow {f_{ap}} = 179\,Hz\]
Using the relation between the speed of the wave, frequency and the wavelength we get the initial and final wavelength. By finding differences, we get the change in wavelength.
\[\Delta \lambda = {\lambda _i} - {\lambda _f} \\ \]
\[\Rightarrow \Delta \lambda = \dfrac{v}{{{f_o}}} - \dfrac{v}{{{f_{ap}}}} \\ \]
\[\Rightarrow \Delta \lambda = \left( {\dfrac{{340}}{{170}} - \dfrac{{340}}{{179}}} \right)m \\ \]
\[\therefore \Delta \lambda = 0.10\,m\]
Hence, the apparent change in the wavelength of the sound wave is 0.10 m.
Therefore, the correct option is A.
Note: The Doppler’s effect is for the change in the frequency due to relative motion between the source of the sound and the observer. So, we can’t directly use the Doppler’s effect for the change in wavelength for the mechanical wave-like sound.
Formula used:
\[{f_{ap}} = {f_o}\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)\]
where \[{f_{ap}}\] is the apparent frequency heard by the listener moving with speed \[{v_o}\] with respect to the source which is moving with speed \[{v_s}\], \[{f_o}\] is the original frequency and v is the speed of sound in air.
\[v = f\lambda \]
where v is the speed of the wave, f is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
Complete step by step solution:
It is given that the source of the sound is approaching towards the stationary observer.
The Doppler Effect formula for the sound source moving towards the stationary observer is,
\[{f_{ap}} = {f_o}\left( {\dfrac{v}{{v - {v_s}}}} \right)\]
The speed of sound, v is given as 340 m/s and the original frequency is given as 170 Hz.
So, the apparent frequency is,
\[{f_{ap}} = \left( {170\,Hz} \right)\left( {\dfrac{{340}}{{340 - 17}}} \right) \\ \]
\[\Rightarrow {f_{ap}} = 170 \times \dfrac{{340}}{{323}}Hz \\ \]
\[\Rightarrow {f_{ap}} = 179\,Hz\]
Using the relation between the speed of the wave, frequency and the wavelength we get the initial and final wavelength. By finding differences, we get the change in wavelength.
\[\Delta \lambda = {\lambda _i} - {\lambda _f} \\ \]
\[\Rightarrow \Delta \lambda = \dfrac{v}{{{f_o}}} - \dfrac{v}{{{f_{ap}}}} \\ \]
\[\Rightarrow \Delta \lambda = \left( {\dfrac{{340}}{{170}} - \dfrac{{340}}{{179}}} \right)m \\ \]
\[\therefore \Delta \lambda = 0.10\,m\]
Hence, the apparent change in the wavelength of the sound wave is 0.10 m.
Therefore, the correct option is A.
Note: The Doppler’s effect is for the change in the frequency due to relative motion between the source of the sound and the observer. So, we can’t directly use the Doppler’s effect for the change in wavelength for the mechanical wave-like sound.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2026

Carbon Dioxide Formula - Definition, Uses and FAQs

Absolute Pressure Formula - Explanation, and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Difference Between Solute and Solvent: JEE Main 2026

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Wheatstone Bridge Explained: Principle, Working, and Uses

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Average and RMS Value in Physics: Formula, Comparison & Application

Elastic Collisions in One Dimension: Concepts, Derivation, and Examples
