A sound wave has a frequency of 100 Hz and pressure amplitude of 10 Pa, then the displacement amplitude is:
(Given speed of sound in air \[ = 340m/s\] and density of air \[ = 1.29kg/{m^3}\])
(A) \[3.63 \times {10^{ - 5}}m\]
(B) \[3 \times {10^{ - 5}}m\]
(C) \[4.2 \times {10^{ - 5}}m\]
(D) \[6.8 \times {10^{ - 5}}m\]
Answer
Verified
120.9k+ views
Hint: The pressure amplitude of a wave is equal to the product of the bulk modulus of the fluid, displacement amplitude and the wave number of the wave. Recall that the velocity can be given as the square root of the ratio of the bulk modulus to the density of the medium.
Formula used: In this solution we will be using the following formulae;
\[v = \sqrt {\dfrac{B}{\rho }} \] where \[v\] is the speed of sound in a fluid, \[B\] is the bulk modulus of the fluid, and \[\rho \] is the density.
\[{P_0} = BAk\] where \[P\] is the pressure amplitude of a sound wave, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
\[k = \dfrac{{2\pi }}{\lambda }\] where \[\lambda \] is the wavelength of the wave.
\[v = f\lambda \] where \[v\] is the speed of the wave, \[f\] is the frequency.
Complete Step-by-Step Solution:
Given the pressure amplitude, we are asked to find the displacement amplitude. Generally, the formula of the pressure amplitude is given as
\[{P_0} = BAk\] where \[B\] is the bulk modulus of the fluid the wave travels, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
To calculate \[B\], we recall that
\[v = \sqrt {\dfrac{B}{\rho }} \]
\[ \Rightarrow B = {v^2}\rho \]
Hence, by inserting known values, we have
\[B = {340^2} \times 1.29 = 149124Pa\]
To calculate \[k\], we recall that
\[k = \dfrac{{2\pi }}{\lambda }\] but \[v = f\lambda \], where \[v\] is the speed of the wave, \[f\] is the frequency and \[\lambda \] is the wavelength of the wave, hence,
\[k = \dfrac{{2\pi f}}{v} = \dfrac{{2\pi \left( {100} \right)}}{{340}} = 1.8480{m^{ - 1}}\]
Hence, from \[{P_0} = BAk\]
\[A = \dfrac{{{P_0}}}{{Bk}}\]
\[ \Rightarrow A = \dfrac{{10}}{{149124 \times 1.84800}} = 3.63 \times {10^{ - 5}}m\]
Hence, the correct answer is A
Note: Alternatively, to avoid time consuming intermediate calculations and approximation errors, we used find the final expression before inserting all known values, as in;
From
\[A = \dfrac{{{P_0}}}{{Bk}}\]
Considering that \[B = {v^2}\rho \] and \[k = \dfrac{{2\pi f}}{v}\] we can substitute into the equation above. Hence,
\[A = \dfrac{{{P_0}}}{{\left( {{v^2}\rho } \right)\left( {\dfrac{{2\pi f}}{v}} \right)}}\]
Simplifying by cancelling \[v\], we have
\[A = \dfrac{{{P_0}}}{{2\pi fv\rho }}\]
Hence, by inserting values, we get
\[ \Rightarrow A = \dfrac{{10}}{{2\pi \times 100 \times 340 \times 1.29}} = 3.63 \times {10^{ - 5}}m\]
Formula used: In this solution we will be using the following formulae;
\[v = \sqrt {\dfrac{B}{\rho }} \] where \[v\] is the speed of sound in a fluid, \[B\] is the bulk modulus of the fluid, and \[\rho \] is the density.
\[{P_0} = BAk\] where \[P\] is the pressure amplitude of a sound wave, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
\[k = \dfrac{{2\pi }}{\lambda }\] where \[\lambda \] is the wavelength of the wave.
\[v = f\lambda \] where \[v\] is the speed of the wave, \[f\] is the frequency.
Complete Step-by-Step Solution:
Given the pressure amplitude, we are asked to find the displacement amplitude. Generally, the formula of the pressure amplitude is given as
\[{P_0} = BAk\] where \[B\] is the bulk modulus of the fluid the wave travels, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
To calculate \[B\], we recall that
\[v = \sqrt {\dfrac{B}{\rho }} \]
\[ \Rightarrow B = {v^2}\rho \]
Hence, by inserting known values, we have
\[B = {340^2} \times 1.29 = 149124Pa\]
To calculate \[k\], we recall that
\[k = \dfrac{{2\pi }}{\lambda }\] but \[v = f\lambda \], where \[v\] is the speed of the wave, \[f\] is the frequency and \[\lambda \] is the wavelength of the wave, hence,
\[k = \dfrac{{2\pi f}}{v} = \dfrac{{2\pi \left( {100} \right)}}{{340}} = 1.8480{m^{ - 1}}\]
Hence, from \[{P_0} = BAk\]
\[A = \dfrac{{{P_0}}}{{Bk}}\]
\[ \Rightarrow A = \dfrac{{10}}{{149124 \times 1.84800}} = 3.63 \times {10^{ - 5}}m\]
Hence, the correct answer is A
Note: Alternatively, to avoid time consuming intermediate calculations and approximation errors, we used find the final expression before inserting all known values, as in;
From
\[A = \dfrac{{{P_0}}}{{Bk}}\]
Considering that \[B = {v^2}\rho \] and \[k = \dfrac{{2\pi f}}{v}\] we can substitute into the equation above. Hence,
\[A = \dfrac{{{P_0}}}{{\left( {{v^2}\rho } \right)\left( {\dfrac{{2\pi f}}{v}} \right)}}\]
Simplifying by cancelling \[v\], we have
\[A = \dfrac{{{P_0}}}{{2\pi fv\rho }}\]
Hence, by inserting values, we get
\[ \Rightarrow A = \dfrac{{10}}{{2\pi \times 100 \times 340 \times 1.29}} = 3.63 \times {10^{ - 5}}m\]
Recently Updated Pages
What is Hybridisation? Types, Examples, and Importance
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main Chemistry Exam Pattern 2025
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details
JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
JEE Main Maths Paper Pattern 2025
Electromagnetic Waves Chapter - Physics JEE Main