
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (\[{K_t}\]) as well as rotational kinetic energy (\[{K_r}\]) simultaneously. The ratio \[{K_t}:\left( {{K_t} + {K_r}} \right)\] for the sphere is:
(A) \[10:7\]
(B) \[5:7\;\]
(C) \[7:10\]
(D) \[2:5\]
Answer
146.7k+ views
HintWe will use the concept of analogy of translatory motion and rotatory motion. We will find the equivalent relations for both the motions. Finally, we will find their ratio.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
