
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (\[{K_t}\]) as well as rotational kinetic energy (\[{K_r}\]) simultaneously. The ratio \[{K_t}:\left( {{K_t} + {K_r}} \right)\] for the sphere is:
(A) \[10:7\]
(B) \[5:7\;\]
(C) \[7:10\]
(D) \[2:5\]
Answer
173.7k+ views
HintWe will use the concept of analogy of translatory motion and rotatory motion. We will find the equivalent relations for both the motions. Finally, we will find their ratio.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Recently Updated Pages
JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

JEE Main 2025-26 Biomolecules Mock Test – Free Practice Online

JEE Main 2025 Organic Compounds Containing Oxygen Mock Test

JEE Main Mock Test 2025-26: Principles & Best Practices

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
