When a potential difference is applied across the ends of a linear metallic conductor
A. The free electrons are accelerated continuously from the lower potential end to the higher potential end of the conductor
B. The free electrons are accelerated continuously from the higher potential end to the lower potential end of the conductor
C. The free electrons acquire a constant drift velocity from the lower potential end to the higher potential end of the conductor
D. The free electrons are set in motion from their position of rest
Answer
Verified
118.8k+ views
Hint: When electric potential difference is applied then there is electric field inside the metallic conductor. When a charge is kept in an electric field then it experiences electric force.
Complete step by step solution:
When a potential difference is applied across the ends of a linear metallic conductor then one end of the conductor is at lower potential and other should be at higher potential. If the applied potential difference is constant. Then the potential gradient inside the conductor will be constant. The change in potential difference per unit horizontal distance is equal to the negative of the electric field vector. So the electric field inside the conductor is from higher potential to the lower potential.
In metallic conductors the free electrons are in random motion when potential difference is zero. When the potential difference is applied then the electric field gets inside the conductor. The electric force is applied on the free electrons in the direction opposite to the direction of the electric field vector, i.e. from lower higher potential to the lower potential. Hence, the free electrons acquire drift velocity from the lower potential end to the higher potential end of the conductor.
Therefore, the correct option is C.
Note: As there is force acting on the free electron, so there is acceleration in it. But during the motion it encounters collisions with the neighbouring free electrons. Hence, the acceleration is not continuous.
Complete step by step solution:
When a potential difference is applied across the ends of a linear metallic conductor then one end of the conductor is at lower potential and other should be at higher potential. If the applied potential difference is constant. Then the potential gradient inside the conductor will be constant. The change in potential difference per unit horizontal distance is equal to the negative of the electric field vector. So the electric field inside the conductor is from higher potential to the lower potential.
In metallic conductors the free electrons are in random motion when potential difference is zero. When the potential difference is applied then the electric field gets inside the conductor. The electric force is applied on the free electrons in the direction opposite to the direction of the electric field vector, i.e. from lower higher potential to the lower potential. Hence, the free electrons acquire drift velocity from the lower potential end to the higher potential end of the conductor.
Therefore, the correct option is C.
Note: As there is force acting on the free electron, so there is acceleration in it. But during the motion it encounters collisions with the neighbouring free electrons. Hence, the acceleration is not continuous.
Recently Updated Pages
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Absolute Pressure Formula - Explanation, and FAQs
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
A combination of five resistors is connected to a cell class 12 physics JEE_Main
Other Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season