
A particle moves through angular displacement $\theta $ on a circular path of radius r. The linear displacement will be:
A) $2r\sin \left( {\dfrac{\theta }{2}} \right)$.
B) $2r\cos \left( {\dfrac{\theta }{2}} \right)$.
C) $2r\tan \left( {\dfrac{\theta }{2}} \right)$.
D) $2r\cot \left( {\dfrac{\theta }{2}} \right)$.
Answer
148.2k+ views
Hint: A displacement is defined as the shortest distance between the intimal and final position. The angular displacement is the displacement on the circular track which is represented by angle which is$\theta $ whereas linear displacement will be the shortest distance between the initial and the final point on the circular point.
Formula Used: The formula for the linear displacement is given by,
$ \Rightarrow \Delta \vec r = \sqrt {{r_2}^2 + {r_1}^2 - 2{r_1}{r_2}\cos \theta } $
Complete step by step answer:
It is given in the problem that a particle moves through angular displacement $\theta $ on a circular path of radius r and we need to find the linear displacement between the initial and the final position of the body.
As it is given that the angle between the initial and final position or the angular displacement is given to be$\theta $. Let the initial position vector be ${\vec r_1}$ and the final position vector is ${\vec r_2}$ and the points on the circle be A and B respectively.

Here the linear displacement is equal to AC. Let us calculate the value of AC from both of the triangle ABO and triangle BCO.
In triangle ABO,
$ \Rightarrow \sin \left( {\dfrac{\theta }{2}} \right) = \dfrac{{AB}}{R}$
$ \Rightarrow AB = R\sin \left( {\dfrac{\theta }{2}} \right)$………eq. (1)
In triangle BCO,
$ \Rightarrow \sin \left( {\dfrac{\theta }{2}} \right) = \dfrac{{BC}}{R}$
$ \Rightarrow BC = R\sin \left( {\dfrac{\theta }{2}} \right)$………eq. (2)
Since, $AC = AB + BC$.
Replacing the values of AB and BC from the equation (1) and equation (2) in the above equation.
$ \Rightarrow AC = AB + BC$
\[ \Rightarrow AC = \left[ {R\sin \left( {\dfrac{\theta }{2}} \right)} \right] + \left[ {R\sin \left( {\dfrac{\theta }{2}} \right)} \right]\]
\[ \Rightarrow AC = 2 \cdot R\sin \left( {\dfrac{\theta }{2}} \right)\].
The linear displacement will be equal to\[AC = 2 \cdot R\sin \left( {\dfrac{\theta }{2}} \right)\]. The correct answer is option A.
Note: It is advisable to the students to understand and remember the formula of the vector addition or subtraction as it can help in solving these kinds of problems. The angle $\theta $ is between the line joining the initial and the final position with the center of the circle.
Formula Used: The formula for the linear displacement is given by,
$ \Rightarrow \Delta \vec r = \sqrt {{r_2}^2 + {r_1}^2 - 2{r_1}{r_2}\cos \theta } $
Complete step by step answer:
It is given in the problem that a particle moves through angular displacement $\theta $ on a circular path of radius r and we need to find the linear displacement between the initial and the final position of the body.
As it is given that the angle between the initial and final position or the angular displacement is given to be$\theta $. Let the initial position vector be ${\vec r_1}$ and the final position vector is ${\vec r_2}$ and the points on the circle be A and B respectively.

Here the linear displacement is equal to AC. Let us calculate the value of AC from both of the triangle ABO and triangle BCO.
In triangle ABO,
$ \Rightarrow \sin \left( {\dfrac{\theta }{2}} \right) = \dfrac{{AB}}{R}$
$ \Rightarrow AB = R\sin \left( {\dfrac{\theta }{2}} \right)$………eq. (1)
In triangle BCO,
$ \Rightarrow \sin \left( {\dfrac{\theta }{2}} \right) = \dfrac{{BC}}{R}$
$ \Rightarrow BC = R\sin \left( {\dfrac{\theta }{2}} \right)$………eq. (2)
Since, $AC = AB + BC$.
Replacing the values of AB and BC from the equation (1) and equation (2) in the above equation.
$ \Rightarrow AC = AB + BC$
\[ \Rightarrow AC = \left[ {R\sin \left( {\dfrac{\theta }{2}} \right)} \right] + \left[ {R\sin \left( {\dfrac{\theta }{2}} \right)} \right]\]
\[ \Rightarrow AC = 2 \cdot R\sin \left( {\dfrac{\theta }{2}} \right)\].
The linear displacement will be equal to\[AC = 2 \cdot R\sin \left( {\dfrac{\theta }{2}} \right)\]. The correct answer is option A.
Note: It is advisable to the students to understand and remember the formula of the vector addition or subtraction as it can help in solving these kinds of problems. The angle $\theta $ is between the line joining the initial and the final position with the center of the circle.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Electrical Field of Charged Spherical Shell - JEE

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
