
A glass flask contains some mercury at room temperature. It is found that at different temperatures the volume of air inside the flask remains the same. If the volume of mercury in flask is $300c{m^3}$, then the volume of flask is (given that the coefficient of volume expansion of mercury and coefficient of linear expansion of glass are $1.8 \times {10^{ - 4}}{{(^0}C)^{ - 1}}$ and $9 \times {10^{ - 6}}{{(^0}C)^{ - 1}}$ respectively):
A) $4500c{m^3}$
B) $450c{m^3}$
C) $2000c{m^3}$
D) $6000c{m^3}$
Answer
232.8k+ views
Hint:- We know that volume of a matter changes with change in its temperature. In given examples the volume of mercury and flask change with change in their temperature. Here the volume of the flask is the sum of the volume of mercury and air inside the flask. Volume of air remains same then change in volume of glass is equal to change in volume of flask.
Complete step by step solution:
Given, the volume of mercury is ${V_{Hg}} = 300c{m^3}$.
Volume expansion of mercury is ${\gamma _{Hg}} = \;1.8 \times {10^{ - 4}}{{(^0}C)^{ - 1}}$.
Let the volume of the flask is ${V_{flask}}$.
Volume expansion of mercury is ${\gamma _{flask}} = \;3 \times 9 \times {10^{ - 6}}{{(^0}C)^{ - 1}}$ (as we know volume expansion coefficient is three time of linear expansion coefficient).
Change in volume is given by $\Delta V = V \times \gamma \times \Delta T$.
Change in volume of mercury is
$\Delta {V_{Hg}} = 300 \times 1.8 \times {10^{ - 4}} \times \Delta T$ -(1)
Change in volume of flask is
$\Delta {V_{flask}} = {V_{flask}} \times 3 \times 9 \times {10^{ - 6}} \times \Delta T$ -(2)
Here the volume of the flask is the sum of the volume of mercury and air inside the flask. Volume of air remains same then change in volume of glass is equal to change in volume of flask.
Hence, \[\Delta {V_{flask}} = \Delta {V_{Hg}}\] -(3)
From equation (1), (2) and (3), we have
\[{V_{flask}} \times 3 \times {10^{ - 6}} = 300 \times 1.8 \times {10^{ - 4}}\]
${V_{flask}} = \dfrac{{300 \times 1.8 \times {{10}^{ - 4}}}}{{3 \times 9 \times {{10}^{ - 6}}}} = 2000c{m^3}$
Hence the correct answer is option C.
Note: For a matter coefficient of volume expansion is three times of linear expansion of that and surface coefficient is two times of linear coefficient. Sometimes temperature coefficient also changes with change in temperature. Mercury is used in thermometers due to its constant temperature coefficient.
Complete step by step solution:
Given, the volume of mercury is ${V_{Hg}} = 300c{m^3}$.
Volume expansion of mercury is ${\gamma _{Hg}} = \;1.8 \times {10^{ - 4}}{{(^0}C)^{ - 1}}$.
Let the volume of the flask is ${V_{flask}}$.
Volume expansion of mercury is ${\gamma _{flask}} = \;3 \times 9 \times {10^{ - 6}}{{(^0}C)^{ - 1}}$ (as we know volume expansion coefficient is three time of linear expansion coefficient).
Change in volume is given by $\Delta V = V \times \gamma \times \Delta T$.
Change in volume of mercury is
$\Delta {V_{Hg}} = 300 \times 1.8 \times {10^{ - 4}} \times \Delta T$ -(1)
Change in volume of flask is
$\Delta {V_{flask}} = {V_{flask}} \times 3 \times 9 \times {10^{ - 6}} \times \Delta T$ -(2)
Here the volume of the flask is the sum of the volume of mercury and air inside the flask. Volume of air remains same then change in volume of glass is equal to change in volume of flask.
Hence, \[\Delta {V_{flask}} = \Delta {V_{Hg}}\] -(3)
From equation (1), (2) and (3), we have
\[{V_{flask}} \times 3 \times {10^{ - 6}} = 300 \times 1.8 \times {10^{ - 4}}\]
${V_{flask}} = \dfrac{{300 \times 1.8 \times {{10}^{ - 4}}}}{{3 \times 9 \times {{10}^{ - 6}}}} = 2000c{m^3}$
Hence the correct answer is option C.
Note: For a matter coefficient of volume expansion is three times of linear expansion of that and surface coefficient is two times of linear coefficient. Sometimes temperature coefficient also changes with change in temperature. Mercury is used in thermometers due to its constant temperature coefficient.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

