A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. Determine the ratio of their lengths.
A. 1 : 1
B. 2 : 1
C. 1 : 4
D. 1 : 2
Answer
Verified
118.5k+ views
Hint: In this question, we need to find the ratio of closed and open organ pipes if they are tuned to the same frequency. So, we need to use the following formula. After, equating the equations for closed organ pipe and open organ pipe, we will get the desired result.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Formula used:
The formula for fundamental frequency for closed organ pipe is given by
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Similarly, the formula for fundamental frequency for open organ pipe is given by
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Where, \[{f_c}\] is the fundamental frequency for closed organ pipe, \[{f_o}\] is the fundamental frequency for open organ pipe, \[v\] is the speed of wave, \[{L_c}\] is the length of closed organ pipe and \[{L_o}\] is the length of open organ pipe.
Complete step by step solution:
We know that, the basic frequency for closed organ pipe is,
\[{f_c} = \dfrac{v}{{4{L_c}}}\]
Also, the basic frequency for closed organ pipe is,
\[{f_o} = \dfrac{v}{{2{L_o}}}\]
Here, speed is constant.
So, according to the given condition, both the pipes are tuned to the same frequency.Thus, we get
\[{f_c} = {f_o}\]
So, \[\dfrac{v}{{4{L_c}}} = \dfrac{v}{{2{L_o}}}\]
By simplifying, we get
\[\dfrac{1}{{4{L_c}}} = \dfrac{1}{{2{L_o}}}\]
\[\Rightarrow 4{L_c} = 2{L_o}\]
\[\Rightarrow 2{L_c} = {L_o}\]
By simplifying, further, we get
\[\dfrac{{{L_c}}}{{{L_o}}} = \dfrac{1}{2}\]
That means \[{L_c}:{L_o} = 1:2\]
Hence, the ratio of closed and open organ pipes, if they are tuned to the same frequency, is 1:2.
Therefore, the correct option is (D).
Note: Many students make mistakes in writing the formula for the fundamental frequency of a pipe. Consequently, the end result may get wrong. Here, the simplification part is also important for getting the final answer.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
NTA JEE Mains 2025 Correction window - Dates and Procedure
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)