
What is the value of the integral \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]?
A. \[\dfrac{3}{2}\]
B. \[ - \dfrac{8}{3}\]
C. \[\dfrac{3}{8}\]
D. \[\dfrac{8}{3}\]
Answer
231.9k+ views
Hint: Here, a definite integral is given. First, rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\]. Then, multiply the numerator and the denominator by \[{\cos ^4}x\] and simplify the integral. Then, simplify the integral by using the trigonometric ratios. After that, apply the integration rule for the limit of the integral \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]. Then simplify the numerator by using the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]. Now, substitute \[\tan x = u\] in the given integral and solve it by using the integration formulas. In the end, apply the upper and lower limit of the integration and solve it to get the required answer.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\], if \[f\left( x \right)\] is an even function
\[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{{\sin x}}{{\cos x}} = \tan x = \dfrac{1}{{\cot x}}\]
\[1 + {\tan ^2}x = {\sec ^2}x\]
\[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \]
Complete step by step solution: The given integral is \[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} \]
Let’s simplify the above integral.
Rewrite the given term \[{\sin ^{ - 4}}x\] as \[\dfrac{1}{{{{\sin }^4}x}}\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{1}{{{{\sin }^4}x}} dx} \]
Now multiply the numerator and the denominator of the right-hand side by \[{\cos ^4}x\].
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\cos }^4}x}}{{{{\sin }^4}x}} \times \dfrac{1}{{{{\cos }^4}x}}} \right] dx} \]
Simplify the above integral by using the basic trigonometric ratios.
\[I = \int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\left[ {\dfrac{1}{{{{\tan }^4}x}}{{\sec }^4}x} \right] dx} \]
Now apply the integration rule for the limit.
\[I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x}}} \right] dx} \]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {{{\sec }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \]
Apply the trigonometric formula \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow I = 2\int\limits_0^{\dfrac{\pi }{4}} {\left[ {\dfrac{{\left( {1 + {{\tan }^2}x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\tan }^4}x}}} \right] dx} \] \[.....\left( 1 \right)\]
Now substitute \[\tan x = u\] in the above equation.
Differentiate the substituting equation, we get
\[{\sec ^2}xdx = du\]
And limits changes as follows:
\[x = 0 \Rightarrow u = 0\] and \[x = \dfrac{\pi }{4} \Rightarrow u = 1\]
We get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow I = 2\int\limits_0^1 {\dfrac{{1 + {u^2}}}{{{u^4}}} du} \]
Simplify the right-hand side.
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {\dfrac{1}{{{u^4}}} + \dfrac{1}{{{u^2}}}} \right] du} \]
\[ \Rightarrow I = 2\int\limits_0^1 {\left[ {{u^{ - 4}} + {u^{ - 2}}} \right] du} \]
Apply the addition rule of integration.
\[ \Rightarrow I = 2\left[ {\int\limits_0^1 {{u^{ - 4}} du} + \int\limits_0^1 {{u^{ - 2}} du} } \right]\]
Solve both integrals by using the rule \[\int {{x^{ - n}}dx = \dfrac{{{x^{ - n + 1}}}}{{ - n + 1}}} \].
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 4 + 1}}}}{{ - 4 + 1}} + \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow I = 2\left[ {\dfrac{{{u^{ - 3}}}}{{ - 3}} + \dfrac{{{u^{ - 1}}}}{{ - 1}}} \right]_0^1\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{u^3}}}} \right|_0^1 + \left| {\dfrac{1}{u}} \right|_0^1} \right]\]
\[ \Rightarrow I = - 2\left[ {\left| {\dfrac{1}{{3{{\left( 1 \right)}^3}}} - \dfrac{1}{{3{{\left( 0 \right)}^3}}}} \right| + \left| {\dfrac{1}{1} - \dfrac{1}{0}} \right|} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{1}{3} + 1} \right]\]
\[ \Rightarrow I = - 2\left[ {\dfrac{4}{3}} \right]\]
\[ \Rightarrow I = - \dfrac{8}{3}\]
Therefore,
\[\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {{{\sin }^{ - 4}}x dx} = - \dfrac{8}{3}\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
If the points P1 and P2 represent two complex numbers class 11 maths JEE_Advanced

If R and C denote the set of real numbers and complex class 11 maths JEE_Advanced

If complex numbers z1 z2 and z3 represent the vertices class 11 maths JEE_Advanced

Let S be a set of all the distinct numbers of the form class 11 maths JEE_Advanced

Find how many numbers can be formed with the digits class 11 maths JEE_Advanced

The equation of the lines on which the perpendiculars class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

