
Write Joule's law of heating
Answer
503.4k+ views
Hint: The Heat produced within a conductor due to flow of current (within an electric wire) is known as the heating effect of Joule.
Complete step-by-step answer:
Consider a current I flowing through a resistor of resistance R. Let the potential difference across it be 'V' and ‘t’ be the time during which a charge flows across. The work done in moving the charge Q through a potential difference V is VQ. Therefore, the source must apply energy equal to ‘VQ’ in time ‘t’.
Hence power input \[\left( P \right)=V\dfrac{Q}{t}=VI\]
As \[\dfrac{Q}{t}=I\]
Energy supplied to the circuit in ‘t’ time \[=P\times t=VIt\]
This amount of Energy is dissipated in the resistor as heat thus for a steady current I.
The amount of Heat H Produced in time \[H=IVt\]
\[\Rightarrow H={{I}^{2}}RT\]
This is known as Joule's law of heating.
The law implies that heat produced in a resistor is directly proportional to the square of current. For a given resistance, directly proportional to resistance for a given current and directly proportional to the time for which the current flows through the resistor.
Note: The amount of heat produced in a type of energy which is produced in current conducting wire is proportional to the square of the amount of current, the resistance of wire and time of current flowing.
Hence \[H={{I}^{2}}RT\]
Complete step-by-step answer:
Consider a current I flowing through a resistor of resistance R. Let the potential difference across it be 'V' and ‘t’ be the time during which a charge flows across. The work done in moving the charge Q through a potential difference V is VQ. Therefore, the source must apply energy equal to ‘VQ’ in time ‘t’.
Hence power input \[\left( P \right)=V\dfrac{Q}{t}=VI\]
As \[\dfrac{Q}{t}=I\]
Energy supplied to the circuit in ‘t’ time \[=P\times t=VIt\]
This amount of Energy is dissipated in the resistor as heat thus for a steady current I.
The amount of Heat H Produced in time \[H=IVt\]
\[\Rightarrow H={{I}^{2}}RT\]
This is known as Joule's law of heating.
The law implies that heat produced in a resistor is directly proportional to the square of current. For a given resistance, directly proportional to resistance for a given current and directly proportional to the time for which the current flows through the resistor.
Note: The amount of heat produced in a type of energy which is produced in current conducting wire is proportional to the square of the amount of current, the resistance of wire and time of current flowing.
Hence \[H={{I}^{2}}RT\]
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
