
Write Joule's law of heating
Answer
528.6k+ views
Hint: The Heat produced within a conductor due to flow of current (within an electric wire) is known as the heating effect of Joule.
Complete step-by-step answer:
Consider a current I flowing through a resistor of resistance R. Let the potential difference across it be 'V' and ‘t’ be the time during which a charge flows across. The work done in moving the charge Q through a potential difference V is VQ. Therefore, the source must apply energy equal to ‘VQ’ in time ‘t’.
Hence power input \[\left( P \right)=V\dfrac{Q}{t}=VI\]
As \[\dfrac{Q}{t}=I\]
Energy supplied to the circuit in ‘t’ time \[=P\times t=VIt\]
This amount of Energy is dissipated in the resistor as heat thus for a steady current I.
The amount of Heat H Produced in time \[H=IVt\]
\[\Rightarrow H={{I}^{2}}RT\]
This is known as Joule's law of heating.
The law implies that heat produced in a resistor is directly proportional to the square of current. For a given resistance, directly proportional to resistance for a given current and directly proportional to the time for which the current flows through the resistor.
Note: The amount of heat produced in a type of energy which is produced in current conducting wire is proportional to the square of the amount of current, the resistance of wire and time of current flowing.
Hence \[H={{I}^{2}}RT\]
Complete step-by-step answer:
Consider a current I flowing through a resistor of resistance R. Let the potential difference across it be 'V' and ‘t’ be the time during which a charge flows across. The work done in moving the charge Q through a potential difference V is VQ. Therefore, the source must apply energy equal to ‘VQ’ in time ‘t’.
Hence power input \[\left( P \right)=V\dfrac{Q}{t}=VI\]
As \[\dfrac{Q}{t}=I\]
Energy supplied to the circuit in ‘t’ time \[=P\times t=VIt\]
This amount of Energy is dissipated in the resistor as heat thus for a steady current I.
The amount of Heat H Produced in time \[H=IVt\]
\[\Rightarrow H={{I}^{2}}RT\]
This is known as Joule's law of heating.
The law implies that heat produced in a resistor is directly proportional to the square of current. For a given resistance, directly proportional to resistance for a given current and directly proportional to the time for which the current flows through the resistor.
Note: The amount of heat produced in a type of energy which is produced in current conducting wire is proportional to the square of the amount of current, the resistance of wire and time of current flowing.
Hence \[H={{I}^{2}}RT\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE
