Answer
Verified
109.5k+ views
Hint: First the light from the object will be reflected at the convex mirror and it will create its image. Now, this image will act as a virtual object for the concave mirror, at which the reflection takes place and then the second image will be formed. Keeping in mind the sign convention, solve for the image distance for each mirror, using the Mirror Formula.
Formula used:
Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
Complete answer:
By Mirror Formula we know that:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Let the convex mirror at which the first reflection occurs be ${M_1}$ and let the concave mirror at which the second reflection occurs be ${M_2}$ .
It is given that the focal length of the two mirrors is 15 cm respectively and they are separated by a distance of 60 cm.
It is also given that the object is placed 30 cm from the pole of either of the two mirrors.
Now, let us first consider the reflection taking place at the convex mirror ${M_1}$ .
Focal length of a convex mirror is positive, therefore, $f = 15{\text{ cm}}$
Object distance, $u = - 30{\text{ cm}}$
Now applying Mirror Formula as given in equation (1),
$\dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{30}} = \dfrac{1}{{10}}$
This gives $v = 10{\text{ cm}}$ .
Thus, the first image is formed behind the convex mirror at a distance of 10 cm from its pole.
Now, this image will act as the object for the concave mirror.
Let us now consider the reflection taking place at the concave mirror ${M_2}$ .
Focal length of a concave mirror is negative, therefore, $f = - 15{\text{ cm}}$
Object distance, $u = - (60 + 10) = - 70{\text{ cm}}$
Now applying Mirror Formula as given in equation (1),
$\dfrac{1}{v} = - \dfrac{1}{{15}} + \dfrac{1}{{70}} = \dfrac{{ - 14 + 3}}{{210}} = \dfrac{{ - 11}}{{210}}$
Thus, $v = \dfrac{{ - 210}}{{11}} = - 19.09{\text{ cm}}$ .
Hence, the second image is formed in front of the concave mirror at a distance of 19.09 cm from its pole.
This is the required image distance.
Thus, the correct option is A.
Note: Sign convention is very important in Ray Optics. The directions are measured from the poles of the mirror. The direction of the incident ray is considered to be positive, and any distance measured along the incident ray is positive, else every distance is negative. Therefore, in the above question, for each mirror, we have considered its own sign convention.
Formula used:
Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
Complete answer:
By Mirror Formula we know that:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Let the convex mirror at which the first reflection occurs be ${M_1}$ and let the concave mirror at which the second reflection occurs be ${M_2}$ .
It is given that the focal length of the two mirrors is 15 cm respectively and they are separated by a distance of 60 cm.
It is also given that the object is placed 30 cm from the pole of either of the two mirrors.
Now, let us first consider the reflection taking place at the convex mirror ${M_1}$ .
Focal length of a convex mirror is positive, therefore, $f = 15{\text{ cm}}$
Object distance, $u = - 30{\text{ cm}}$
Now applying Mirror Formula as given in equation (1),
$\dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{30}} = \dfrac{1}{{10}}$
This gives $v = 10{\text{ cm}}$ .
Thus, the first image is formed behind the convex mirror at a distance of 10 cm from its pole.
Now, this image will act as the object for the concave mirror.
Let us now consider the reflection taking place at the concave mirror ${M_2}$ .
Focal length of a concave mirror is negative, therefore, $f = - 15{\text{ cm}}$
Object distance, $u = - (60 + 10) = - 70{\text{ cm}}$
Now applying Mirror Formula as given in equation (1),
$\dfrac{1}{v} = - \dfrac{1}{{15}} + \dfrac{1}{{70}} = \dfrac{{ - 14 + 3}}{{210}} = \dfrac{{ - 11}}{{210}}$
Thus, $v = \dfrac{{ - 210}}{{11}} = - 19.09{\text{ cm}}$ .
Hence, the second image is formed in front of the concave mirror at a distance of 19.09 cm from its pole.
This is the required image distance.
Thus, the correct option is A.
Note: Sign convention is very important in Ray Optics. The directions are measured from the poles of the mirror. The direction of the incident ray is considered to be positive, and any distance measured along the incident ray is positive, else every distance is negative. Therefore, in the above question, for each mirror, we have considered its own sign convention.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main