Answer
Verified
378.6k+ views
Hint: According to the first law of thermodynamics, the total energy of the system is always constant, and heat absorbed or released will be the sum of internal energy of the system and work done.
Isothermal expansion: It is a thermodynamic process in which the temperature of the system always remains constant although the system is undergoing some changes.
Example: Melting of ice, Boiling of water.
Formula Used:
Work done by an ideal gas \[ \Rightarrow W = - {P_{ext}}\Delta V\]
The equation for the first law of thermodynamics \[ \Rightarrow \Delta Q = \Delta U + \Delta W{\text{ }}\]
\[ \Rightarrow Q = U + W\] (simplified form)
Complete answer:
Given that,
Initial volume, \[{V_1} = 2L\]
Final volume, \[{V_2} = 10L\]
Change in volume, \[\Delta V = {V_2} - {V_1} = 10-2 = 8{\text{ }}L\]
Internal pressure, \[{P_{in}} = 10atm\]
External pressure in a vacuum, \[{P_{ext}} = 0\]
Substituting the given data in the ideal gas equation.
\[W = - {P_{ext}}\Delta V = \left( { - 0{\text{ }} \times {\text{ }}8} \right) = 0J\]
Now according to the equation of the first law of thermodynamics \[ \Rightarrow Q = U + W\],
where \[U\] is internal energy and \[Q\] is the heat absorbed or released by the system and \[W\] is work done by or on the system.
In our case net work done is \[0J\] and internal energy is also \[0J\] since internal energy is directly proportional to temperature \[(\Delta U \propto \Delta T)\] .
Hence, we can say that heat absorbed in the expansion is
\[Q = 0J\]
Option D is correct among all.
Note:
For an ideal gas, work done is directly proportional to external pressure and change is volume. Whereas if external pressure is zero there is no external work. And, the system will undergo free expansion.
Isothermal expansion: It is a thermodynamic process in which the temperature of the system always remains constant although the system is undergoing some changes.
Example: Melting of ice, Boiling of water.
Formula Used:
Work done by an ideal gas \[ \Rightarrow W = - {P_{ext}}\Delta V\]
The equation for the first law of thermodynamics \[ \Rightarrow \Delta Q = \Delta U + \Delta W{\text{ }}\]
\[ \Rightarrow Q = U + W\] (simplified form)
Complete answer:
Given that,
Initial volume, \[{V_1} = 2L\]
Final volume, \[{V_2} = 10L\]
Change in volume, \[\Delta V = {V_2} - {V_1} = 10-2 = 8{\text{ }}L\]
Internal pressure, \[{P_{in}} = 10atm\]
External pressure in a vacuum, \[{P_{ext}} = 0\]
Substituting the given data in the ideal gas equation.
\[W = - {P_{ext}}\Delta V = \left( { - 0{\text{ }} \times {\text{ }}8} \right) = 0J\]
Now according to the equation of the first law of thermodynamics \[ \Rightarrow Q = U + W\],
where \[U\] is internal energy and \[Q\] is the heat absorbed or released by the system and \[W\] is work done by or on the system.
In our case net work done is \[0J\] and internal energy is also \[0J\] since internal energy is directly proportional to temperature \[(\Delta U \propto \Delta T)\] .
Hence, we can say that heat absorbed in the expansion is
\[Q = 0J\]
Option D is correct among all.
Note:
For an ideal gas, work done is directly proportional to external pressure and change is volume. Whereas if external pressure is zero there is no external work. And, the system will undergo free expansion.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE