Answer
Verified
479.1k+ views
Hint: In this derivation for width of bright fringes in interference pattern first we will draw a diagram showing interference as shown and then we will proceed according to diagram with the help of Pythagoras Theorem and then for bright fringe make the path difference of light rays equal to integral multiple of wavelength of light and get the desired expression.
Formula Used: -
Pythagoras Theorem
\[H = \sqrt {{P^2} + {B^2}} \]
Where \[H\], \[P\]and \[B\]are the hypotenuse, perpendicular and base of the right angled triangle.
Given data: -
Let suppose a monochromatic light coming from source \[s\]and passes through slit \[{s_1}\] and\[{s_2}\] and meet at point P on screen which is at distance \[D\] from slits and\[d\]is the distance between slits.
\[PC = x\], \[{S_1}E = {S_2}F = D\],\[CF = EC = \dfrac{d}{2}\]
\[PE = PC - EC = x - \dfrac{d}{2}\]
\[PF = PC + CF = x + \dfrac{d}{2}\]
Complete Step by step Solution:
In \[\Delta {S_1}PE\] using Pythagoras theorem
\[{S_1}{P^2} = {S_1}{E^2} + P{E^2}\]
\[{S_1}{P^2} = {D^2} + {(x - \dfrac{d}{2})^2}\]…………………….. (1)
In \[\Delta {S_2}PF\]
\[{S_2}{P^2} = {S_2}{F^2} + P{F^2}\]
\[{S_2}{P^2} = {D^2} + {(x + \dfrac{d}{2})^2}\]…………………….. (2)
On subtracting (2) from (1) we have
\[{S_2}{P^2} - {S_1}{P^2} = {(x + \dfrac{d}{2})^2} - {(x - \dfrac{d}{2})^2} = 2xd\]
\[
({S_2}P - {S_1}P)({S_2}P + {S_1}P) = 2xd \\
({S_2}P - {S_1}P) = \dfrac{{2xd}}{{({S_2}P + {S_1}P)}} = \dfrac{{2xd}}{{2D}} = \dfrac{{xd}}{D}............{S_1}P \simeq {S_2}P \simeq D \\
\]
For bright fringes
Path difference \[{S_2}P - {S_1}P = n\lambda \]
\[
\dfrac{{xd}}{D} = n\lambda \\
x = \dfrac{{n\lambda D}}{d} \\
\]
where \[n = 1,2,3,.....\]
And \[\lambda \] is a wavelength of monochromatic light.
Fringe width
\[
\beta = {x_{n + 1}} - {x_n} \\
\beta = \dfrac{{(n + 1)\lambda D}}{d} - \dfrac{{n\lambda D}}{d} \\
\beta = \dfrac{{\lambda D}}{d} \\
\]
The fringe width for bright fringes and dark fringes are same so if the width for bright fringes is \[2mm\]
then it will be the same for dark fringes \[2mm\].
The center point of interference fringe pattern is bright.
Since there is no path difference of light rays coming from two slits reaching to the center point this will give the bright fringe at center point O.
Note: - In this question we should have the knowledge of the basic principle of interference and the condition for bright fringes and dark fringes. We use the Pythagoras Theorem carefully with the help of geometrical diagrams for the given situation.
Formula Used: -
Pythagoras Theorem
\[H = \sqrt {{P^2} + {B^2}} \]
Where \[H\], \[P\]and \[B\]are the hypotenuse, perpendicular and base of the right angled triangle.
Given data: -
Let suppose a monochromatic light coming from source \[s\]and passes through slit \[{s_1}\] and\[{s_2}\] and meet at point P on screen which is at distance \[D\] from slits and\[d\]is the distance between slits.
\[PC = x\], \[{S_1}E = {S_2}F = D\],\[CF = EC = \dfrac{d}{2}\]
\[PE = PC - EC = x - \dfrac{d}{2}\]
\[PF = PC + CF = x + \dfrac{d}{2}\]
Complete Step by step Solution:
In \[\Delta {S_1}PE\] using Pythagoras theorem
\[{S_1}{P^2} = {S_1}{E^2} + P{E^2}\]
\[{S_1}{P^2} = {D^2} + {(x - \dfrac{d}{2})^2}\]…………………….. (1)
In \[\Delta {S_2}PF\]
\[{S_2}{P^2} = {S_2}{F^2} + P{F^2}\]
\[{S_2}{P^2} = {D^2} + {(x + \dfrac{d}{2})^2}\]…………………….. (2)
On subtracting (2) from (1) we have
\[{S_2}{P^2} - {S_1}{P^2} = {(x + \dfrac{d}{2})^2} - {(x - \dfrac{d}{2})^2} = 2xd\]
\[
({S_2}P - {S_1}P)({S_2}P + {S_1}P) = 2xd \\
({S_2}P - {S_1}P) = \dfrac{{2xd}}{{({S_2}P + {S_1}P)}} = \dfrac{{2xd}}{{2D}} = \dfrac{{xd}}{D}............{S_1}P \simeq {S_2}P \simeq D \\
\]
For bright fringes
Path difference \[{S_2}P - {S_1}P = n\lambda \]
\[
\dfrac{{xd}}{D} = n\lambda \\
x = \dfrac{{n\lambda D}}{d} \\
\]
where \[n = 1,2,3,.....\]
And \[\lambda \] is a wavelength of monochromatic light.
Fringe width
\[
\beta = {x_{n + 1}} - {x_n} \\
\beta = \dfrac{{(n + 1)\lambda D}}{d} - \dfrac{{n\lambda D}}{d} \\
\beta = \dfrac{{\lambda D}}{d} \\
\]
The fringe width for bright fringes and dark fringes are same so if the width for bright fringes is \[2mm\]
then it will be the same for dark fringes \[2mm\].
The center point of interference fringe pattern is bright.
Since there is no path difference of light rays coming from two slits reaching to the center point this will give the bright fringe at center point O.
Note: - In this question we should have the knowledge of the basic principle of interference and the condition for bright fringes and dark fringes. We use the Pythagoras Theorem carefully with the help of geometrical diagrams for the given situation.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE