Answer
Verified
449.4k+ views
Hint: Two liquids of densities do not mix with each other and are at equilibrium at the interface. Using Bernoulli’s equation, we can calculate the pressure of each liquid. As they are at equilibrium at the interface, pressure due to both liquids will be equal and opposite.
Formulas Used:
$P={{P}_{o}}+\rho gh$
Complete answer:
Given two liquids of density ${{d}_{1}}\,\text{and}\,{{d}_{2}}$ are filled in a tube and do not mix with each other. Both subtend an angle ${{90}^{o}}$ at the centre.
At the interface, both liquids are at equilibrium. Therefore, the pressure due to both liquids is equal at the interface.
According to Bernoulli’s theorem, the pressure due to liquids is-
$P={{P}_{o}}+\rho gh$ ---- (1)
Here,$P$ is pressure due to the liquid
${{P}_{o}}$ is atmospheric pressure
$\rho $ is density of the liquid
$g$ is acceleration due to gravity
$h$ is its height
For liquid-1,
From the figure, we can see that,
$\begin{align}
& y=R\sin \alpha \\
& y'=R\cos \alpha \\
\end{align}$
So the height of liquid with density${{d}_{2}}$will be-$R(\sin \alpha +\cos \alpha )$
From eq (1), the pressure of liquid will be-
${{P}_{2}}={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha )$ ---- (2)
Form the above figure, we can see that,
$\begin{align}
& y'=R\cos \alpha \\
& Y=R\sin \alpha \\
\end{align}$
So the height of liquid with density${{d}_{1}}$will be-$R(\cos \alpha -\sin \alpha )$
From eq (1), the pressure of the liquid is-
${{P}_{1}}={{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )$ ---- (3)
At the interface pressure is same, therefore equating eq (2) and eq (3), we get,
$\begin{align}
& {{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha ) \\
& \Rightarrow {{d}_{1}}(\cos \alpha -\sin \alpha )={{d}_{2}}(\sin \alpha +\cos \alpha ) \\
& \Rightarrow \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{\sin \alpha +\cos \alpha }{\cos \alpha -\sin \alpha } \\
\end{align}$
Dividing the above equation by$\cos \alpha $, we get,
$\therefore \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1+\tan \alpha }{1-\tan \alpha }$
The ratio of $\dfrac{{{d}_{1}}}{{{d}_{2}}}$is$\dfrac{1+\tan \alpha }{1-\tan \alpha }$.
Hence, the correct option is (A).
Note:
Pressure due to a fluid is the force exerted by it per unit area. A fluid enclosed in a container exerts pressure in all the directions. Bernoulli’s principle says that when the velocity of fluid increases, its potential energy decreases. Bernoulli's principle follows the law of conservation of energy, i.e. sum of all energies possessed by the flowing fluid is constant.
Formulas Used:
$P={{P}_{o}}+\rho gh$
Complete answer:
Given two liquids of density ${{d}_{1}}\,\text{and}\,{{d}_{2}}$ are filled in a tube and do not mix with each other. Both subtend an angle ${{90}^{o}}$ at the centre.
At the interface, both liquids are at equilibrium. Therefore, the pressure due to both liquids is equal at the interface.
According to Bernoulli’s theorem, the pressure due to liquids is-
$P={{P}_{o}}+\rho gh$ ---- (1)
Here,$P$ is pressure due to the liquid
${{P}_{o}}$ is atmospheric pressure
$\rho $ is density of the liquid
$g$ is acceleration due to gravity
$h$ is its height
For liquid-1,
From the figure, we can see that,
$\begin{align}
& y=R\sin \alpha \\
& y'=R\cos \alpha \\
\end{align}$
So the height of liquid with density${{d}_{2}}$will be-$R(\sin \alpha +\cos \alpha )$
From eq (1), the pressure of liquid will be-
${{P}_{2}}={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha )$ ---- (2)
Form the above figure, we can see that,
$\begin{align}
& y'=R\cos \alpha \\
& Y=R\sin \alpha \\
\end{align}$
So the height of liquid with density${{d}_{1}}$will be-$R(\cos \alpha -\sin \alpha )$
From eq (1), the pressure of the liquid is-
${{P}_{1}}={{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )$ ---- (3)
At the interface pressure is same, therefore equating eq (2) and eq (3), we get,
$\begin{align}
& {{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha ) \\
& \Rightarrow {{d}_{1}}(\cos \alpha -\sin \alpha )={{d}_{2}}(\sin \alpha +\cos \alpha ) \\
& \Rightarrow \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{\sin \alpha +\cos \alpha }{\cos \alpha -\sin \alpha } \\
\end{align}$
Dividing the above equation by$\cos \alpha $, we get,
$\therefore \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1+\tan \alpha }{1-\tan \alpha }$
The ratio of $\dfrac{{{d}_{1}}}{{{d}_{2}}}$is$\dfrac{1+\tan \alpha }{1-\tan \alpha }$.
Hence, the correct option is (A).
Note:
Pressure due to a fluid is the force exerted by it per unit area. A fluid enclosed in a container exerts pressure in all the directions. Bernoulli’s principle says that when the velocity of fluid increases, its potential energy decreases. Bernoulli's principle follows the law of conservation of energy, i.e. sum of all energies possessed by the flowing fluid is constant.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE
What is teminism class 12 biology CBSE