
The velocity of sound in air at room temperature is \[350\,{\text{m/s}}\]. An air column \[35\,{\text{cm}}\] is in length. Find the frequency of the third overtone in a pipe, when it is (a) closed at one end (b) open at both ends.
Answer
567.6k+ views
Hint: Use the formula for velocity of a wave in terms of frequency of the wave. Recall the values of wavelengths of the waves for the third overtone when an organ pipe is closed at one end and open at both the ends. Substitute these values in the formula and determine the required values of frequencies.
Formula used:
The velocity \[v\] of a wave is given by
\[v = n\lambda \] …… (1)
Here, \[n\] is frequency of the wave and \[\lambda \] is wavelength of the wave.
Complete step by step answer:
(a) We have given that the velocity of the sound wave in the organ pipe is \[350\,{\text{m/s}}\].
\[v = 350\,{\text{m/s}}\]
The length of the organ pipe is \[35\,{\text{cm}}\].
\[L = 35\,{\text{cm}}\]
The wavelength \[{\lambda _3}\] of the wave in an organ pipe closed at one end for third overtone is
\[{\lambda _3} = \dfrac{{4L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe closed at one end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in an organ pipe closed at one end.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{4L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{4L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{4L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {0.35\,{\text{m}}} \right)}}\]
\[ \Rightarrow {n_3} = 750\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe closed at one end is \[750\,{\text{Hz}}\].
(b) The wavelength \[{\lambda _3}\] of the wave in an organ pipe open at both ends for third overtone is \[{\lambda _3} = \dfrac{{2L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe open at both ends end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in the organ pipe open at both ends.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{2L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{2L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{2L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {0.35\,{\text{m}}} \right)}}\]
\[ \therefore {n_3} = 1500\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe open at both ends is \[1500\,{\text{Hz}}\].
Note: The students should be careful while using the values of the wavelengths of the waves for the third overtone in the organ pipe closed at one end and open at both ends. If these values are taken incorrect then the final value of the frequency will also be incorrect.
Formula used:
The velocity \[v\] of a wave is given by
\[v = n\lambda \] …… (1)
Here, \[n\] is frequency of the wave and \[\lambda \] is wavelength of the wave.
Complete step by step answer:
(a) We have given that the velocity of the sound wave in the organ pipe is \[350\,{\text{m/s}}\].
\[v = 350\,{\text{m/s}}\]
The length of the organ pipe is \[35\,{\text{cm}}\].
\[L = 35\,{\text{cm}}\]
The wavelength \[{\lambda _3}\] of the wave in an organ pipe closed at one end for third overtone is
\[{\lambda _3} = \dfrac{{4L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe closed at one end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in an organ pipe closed at one end.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{4L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{4L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{4L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{4\left( {0.35\,{\text{m}}} \right)}}\]
\[ \Rightarrow {n_3} = 750\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe closed at one end is \[750\,{\text{Hz}}\].
(b) The wavelength \[{\lambda _3}\] of the wave in an organ pipe open at both ends for third overtone is \[{\lambda _3} = \dfrac{{2L}}{3}\]
Rewrite equation (1) for the velocity of the sound wave in the organ pipe open at both ends end for third overtone.
\[v = {n_3}{\lambda _3}\]
Here, \[{n_3}\] is the frequency for the third overtone in the organ pipe open at both ends.
Rearrange the above equation for \[{n_3}\].
\[{n_3} = \dfrac{v}{{{\lambda _3}}}\]
Substitute \[\dfrac{{2L}}{3}\] for \[{\lambda _3}\] in the above equation.
\[{n_3} = \dfrac{v}{{\dfrac{{2L}}{3}}}\]
\[ \Rightarrow {n_3} = \dfrac{{3v}}{{2L}}\]
Substitute \[350\,{\text{m/s}}\] for \[v\] and \[35\,{\text{cm}}\] for \[L\] in the above equation.
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {35\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)}}\]
\[ \Rightarrow {n_3} = \dfrac{{3\left( {350\,{\text{m/s}}} \right)}}{{2\left( {0.35\,{\text{m}}} \right)}}\]
\[ \therefore {n_3} = 1500\,{\text{Hz}}\]
Hence, the frequency of the third overtone in an organ pipe open at both ends is \[1500\,{\text{Hz}}\].
Note: The students should be careful while using the values of the wavelengths of the waves for the third overtone in the organ pipe closed at one end and open at both ends. If these values are taken incorrect then the final value of the frequency will also be incorrect.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

