
The value of gas constant R is:
a.) 0.082 L atm
b.) 0.987 cal ${ mol }^{ -1 }{ K }^{ -1 }$
c.) 8.3 J ${ mol }^{ -1 }{ K }^{ -1 }$
d.) 83 erg ${ mol }^{ -1 }{ K }^{ -1 }$
Answer
515.7k+ views
Hint: You should know that the gas constant is denoted by the symbol R. It is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole. The values of R vary according to different unit conversions.
Complete step by step answer:
We know that from the ideal gas equation,
PV = nRT
So, $R\quad =\quad \dfrac { PV }{ nT }$
where P is the absolute pressure (SI unit pascals), V is the volume of gas (SI unit cubic meters), n is the amount of gas (SI unit moles), and T is the thermodynamic temperature (SI unit kelvins).
Repeated experiments show that at standard temperature (273 K) and pressure (1 atm), one mole (n = 1) of gas occupies 22.4 L volume. Using this experimental value, you can evaluate the gas constant R,
$R\quad =\quad \dfrac { 1\quad atm\quad \times \quad 22.4\quad L }{ 1\quad mol\quad \times \quad 273\quad K }$
R = 0.08205 L atm ${ K }^{ -1 }{ mol }^{ -1 }$
Now, if we need SI units, P = 101325 N/$m^{ 2 }$ (Pa) instead of 1 atm. The volume is 0.0224 $m^{ 3 }$ instead of 1 L. The numerical value and units for R are
R = 8.314 J ${ K }^{ -1 }{ mol }^{ -1 }$
The gas constant can be expressed in the following values and units.
R = 0.08205 L atm.${ K }^{ -1 }{ mol }^{ -1 }$
=8.3145 L kPa.${ K }^{ -1 }{ mol }^{ -1 }$ (1 atm = 101.32 kPa)
=8.3145 J.${ K }^{ -1 }{ mol }^{ -1 }$ (1 J = 1 L kPa)
=1.987 cal.${ K }^{ -1 }{ mol }^{ -1 }$ (1 cal = 4.182 J)
= 62.364 L torr.${ K }^{ -1 }{ mol }^{ -1 }$ (1 atm = 760 torr)
= 8.3145 x ${ 10 }^{ 7 }$ erg.${ K }^{ -1 }{ mol }^{ -1 }$ (1 J = ${ 10 }^{ 7 }$ erg)
Note: The name the symbol R the Regnault constant in honor of the French chemist Henri Victor Regnault, whose accurate experimental data were used to calculate the early value of the constant.
Complete step by step answer:
We know that from the ideal gas equation,
PV = nRT
So, $R\quad =\quad \dfrac { PV }{ nT }$
where P is the absolute pressure (SI unit pascals), V is the volume of gas (SI unit cubic meters), n is the amount of gas (SI unit moles), and T is the thermodynamic temperature (SI unit kelvins).
Repeated experiments show that at standard temperature (273 K) and pressure (1 atm), one mole (n = 1) of gas occupies 22.4 L volume. Using this experimental value, you can evaluate the gas constant R,
$R\quad =\quad \dfrac { 1\quad atm\quad \times \quad 22.4\quad L }{ 1\quad mol\quad \times \quad 273\quad K }$
R = 0.08205 L atm ${ K }^{ -1 }{ mol }^{ -1 }$
Now, if we need SI units, P = 101325 N/$m^{ 2 }$ (Pa) instead of 1 atm. The volume is 0.0224 $m^{ 3 }$ instead of 1 L. The numerical value and units for R are
R = 8.314 J ${ K }^{ -1 }{ mol }^{ -1 }$
The gas constant can be expressed in the following values and units.
R = 0.08205 L atm.${ K }^{ -1 }{ mol }^{ -1 }$
=8.3145 L kPa.${ K }^{ -1 }{ mol }^{ -1 }$ (1 atm = 101.32 kPa)
=8.3145 J.${ K }^{ -1 }{ mol }^{ -1 }$ (1 J = 1 L kPa)
=1.987 cal.${ K }^{ -1 }{ mol }^{ -1 }$ (1 cal = 4.182 J)
= 62.364 L torr.${ K }^{ -1 }{ mol }^{ -1 }$ (1 atm = 760 torr)
= 8.3145 x ${ 10 }^{ 7 }$ erg.${ K }^{ -1 }{ mol }^{ -1 }$ (1 J = ${ 10 }^{ 7 }$ erg)
Note: The name the symbol R the Regnault constant in honor of the French chemist Henri Victor Regnault, whose accurate experimental data were used to calculate the early value of the constant.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
