Answer
Verified
459.9k+ views
Hint: In this question, we need to comment on who postulated the universal law of gravitation. For this, we will follow the concept of gravitation and the law established.
Complete step by step answer:Sir Isaac Newton (or just Newton) postulated the universal law of gravitation in the year of 1687 (precisely on 5th July 1687) which states that the “Every particle on the Universe is attracted by another particle by a force which is proportional to the product of the masses involve and inversely proportional to the square of the distance between the masses involved. Mathematically,
${F_G} \propto {m_1}{m_2}$ and ${F_G} \propto {1/}{{{r^2}}}$ where, ${F_G}$ is the gravitational force of attraction between the masses, ${m_1}$ and ${m_2}$ are the masses and $r$ is the distance between the masses.
Therefore, we can write:
${F_G} = G \cdot {{{m_1}{m_2}}}{{{r^2}}}$ where, G is the proportional constant, known as the gravitational constant. Its value is given as $G = 6.674 \times {10^{ - 11}}$ and its units is derived as ${m^3}k{g^{ - 1}}{s^{ - 2}}$.
Option B is correct.
Note:Students should be aware of using the value of constants with the units associated with it. The value of the gravitational constant changes with the units associated.
Nicolaus Copernicus was an astronomer who proposed a heliocentric system.
Galileo was an astronomer who proposed the telescopic confirmation of Venus.
Archimedes gave the law of Archimedes principle (force of buoyancy).
Complete step by step answer:Sir Isaac Newton (or just Newton) postulated the universal law of gravitation in the year of 1687 (precisely on 5th July 1687) which states that the “Every particle on the Universe is attracted by another particle by a force which is proportional to the product of the masses involve and inversely proportional to the square of the distance between the masses involved. Mathematically,
${F_G} \propto {m_1}{m_2}$ and ${F_G} \propto {1/}{{{r^2}}}$ where, ${F_G}$ is the gravitational force of attraction between the masses, ${m_1}$ and ${m_2}$ are the masses and $r$ is the distance between the masses.
Therefore, we can write:
${F_G} = G \cdot {{{m_1}{m_2}}}{{{r^2}}}$ where, G is the proportional constant, known as the gravitational constant. Its value is given as $G = 6.674 \times {10^{ - 11}}$ and its units is derived as ${m^3}k{g^{ - 1}}{s^{ - 2}}$.
Option B is correct.
Note:Students should be aware of using the value of constants with the units associated with it. The value of the gravitational constant changes with the units associated.
Nicolaus Copernicus was an astronomer who proposed a heliocentric system.
Galileo was an astronomer who proposed the telescopic confirmation of Venus.
Archimedes gave the law of Archimedes principle (force of buoyancy).
Recently Updated Pages
What happens to the gravitational force between two class 11 physics NEET
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE