
The Schrodinger wave equation for hydrogen atom is:
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Where ${a_0}$ is Bohr radius. If the radial node in 2s be at ${r_0}$ , then find r in terms of ${a_0}$
A.$\dfrac{{{a_0}}}{2}$
B.$2{a_0}$
C.$\sqrt {2{a_0}} $
D.$\dfrac{{{a_0}}}{{\sqrt 2 }}$
Answer
489.3k+ views
Hint: The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero, therefore ${\Psi _{2s}}^2 = 0$ and At node, the radial node is at \[{r_0}\] , So \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]\] = 0, then we can calculate r in terms of ${a_0}$
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light
