
The relation between electric field E and magnetic field H in electromagnetic wave is:
A. \[E=H\]
B. \[E=\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}H\]
C. \[E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H\]
D. \[E=\sqrt{\dfrac{{{\varepsilon }_{o}}}{{{\mu }_{o}}}}H\]
Answer
580.5k+ views
Hint: The ratio of the magnitudes of electric and magnetic fields equals the speed of light in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

