
The maximum efficiency of a heat engine operating between ${{100}^{{}^\circ }}C$ and ${{25}^{{}^\circ }}C$
A. 20 %
B. 22.2%
C. 25%
D. None of the above
Answer
472.2k+ views
Hint: The Carnot cycle has the greatest efficiency possible of an engine because it is assumed that all other wasteful processes don't take place such as friction and no conduction of heat between different parts of the engine at different temperatures.
Complete Solution :
The efficiency can be calculated by the following formula:
Efficiency= $\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}}$
Therefore, we have given temperatures ${{100}^{{}^\circ }}C$and ${{25}^{{}^\circ }}C$.
${{T}_{1}} = 25 + 273 = 298K$
${{T}_{2}} = 100 + 273 = 373K$
$\eta =$ $\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}}$
$\Rightarrow \dfrac{373-298}{373}=\dfrac{75}{373}$
$\Rightarrow 0.20\times 100$
$\Rightarrow 20%$
Hence, 20% is the maximum efficiency of a heat engine operating between ${{100}^{{}^\circ }}C$ and ${{25}^{{}^\circ }}C$.
So, the correct answer is “Option B”.
Note: The Carnot cycle has four different process which leads to the maximum efficiency:
First process is a reversible isothermal gas expansion process. In this process, the ideal gas in the system absorbs q amount of heat from a heat source at a high temperature, expands and does work on surroundings.
- Reversible adiabatic gas expansion process, in this the system is thermally insulated and gas continues to expand and do work on the surrounding which causes the system to lower the temperature.
- Reversible isothermal gas compression: In this process, surroundings do the work to the gas and causes a loss of heat q.
- Reversible adiabatic gas compression: In this process, the system is thermally insulated. Surroundings continue to do the work to the gas which again causes the rise in the temperature. These all steps complete a Carnot engine with efficiency.
Complete Solution :
The efficiency can be calculated by the following formula:
Efficiency= $\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}}$
Therefore, we have given temperatures ${{100}^{{}^\circ }}C$and ${{25}^{{}^\circ }}C$.
${{T}_{1}} = 25 + 273 = 298K$
${{T}_{2}} = 100 + 273 = 373K$
$\eta =$ $\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}}$
$\Rightarrow \dfrac{373-298}{373}=\dfrac{75}{373}$
$\Rightarrow 0.20\times 100$
$\Rightarrow 20%$
Hence, 20% is the maximum efficiency of a heat engine operating between ${{100}^{{}^\circ }}C$ and ${{25}^{{}^\circ }}C$.
So, the correct answer is “Option B”.
Note: The Carnot cycle has four different process which leads to the maximum efficiency:
First process is a reversible isothermal gas expansion process. In this process, the ideal gas in the system absorbs q amount of heat from a heat source at a high temperature, expands and does work on surroundings.
- Reversible adiabatic gas expansion process, in this the system is thermally insulated and gas continues to expand and do work on the surrounding which causes the system to lower the temperature.
- Reversible isothermal gas compression: In this process, surroundings do the work to the gas and causes a loss of heat q.
- Reversible adiabatic gas compression: In this process, the system is thermally insulated. Surroundings continue to do the work to the gas which again causes the rise in the temperature. These all steps complete a Carnot engine with efficiency.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
