Answer
Verified
371.4k+ views
Hint: Hall effect may not be observable in some materials because conduction can involve significant, simultaneous contributions from both electrons and holes, which may be present in different concentrations and have different mobilities. We should remember the formula of electron mobility and current density to solve this.
Complete step by step solution:
When the sample contains an unequal number of carriers of both types whose mobilities are different, static equilibrium (no transverse movement of either electron or holes) is impossible in a magnetic field. The transverse electric field acts differently on electrons and holes.
If the ${E_y}$ is an electric field along the y-direction in the presence of the magnetic field $B$. And let the drift velocities of electrons and holes in x-direction be ${v_e}$ and ${v_h}$. The net Lorentz force per unit charge (effective transverse electric field) on electrons is
${E_y} - {v_e}B$
And on holes is
${E_y} + {v_h}B$
Now there is a transverse drift of electrons and holes and the net transverse current must be zero in equilibrium.
Therefore, the sum of the mobilities of the electrons and holes must be zero. Applying that in the mobility equation we get
${\mu _e}{n_e}e({E_y} - {\mu _e}{E_x}B) + {\mu _h}{n_h}e({E_y} + {\mu _h}{E_x}B) = 0$ (since $v = \mu {E_x}$)
Where $\mu $is the mobility, $e$ is the electronic charge and $n$ is the concentration.
Rearranging the equation we get
${E_y} = \dfrac{{{n_e}{\mu _e}^2 - {n_h}{\mu _h}^2}}{{{n_e}{\mu _e} + {n_h}{\mu _h}}}{E_x}B$
And we know the current density $({j_x})$ is
${j_x} = ({n_e}{\mu _e} + {n_h}{\mu _h})e{E_x}$
Thus the Hall coefficient $({R_H})$ is
${R_H} = \dfrac{{{E_y}}}{{{j_x}B}}$
Substituting the values we get
${R_H} = \dfrac{1}{e}\dfrac{{{n_e}{\mu _e}^2 - {n_h}{\mu _h}^2}}{{{{({n_e}{\mu _e} + {n_h}{\mu _h})}^2}}}$
Now since the Hall effect is not observed in the semiconductor the coefficient will be zero.
Therefore equating the above equation to zero we get,
$\dfrac{{{n_e}}}{{{n_h}}} = {\left( {\dfrac{{{\mu _e}}}{{{\mu _h}}}} \right)^2}$
Now $\eta = 0.2$ (given)
Therefore $\dfrac{{{n_e}}}{{{n_h}}} = \dfrac{1}{{{\eta ^2}}}$
$ \Rightarrow \dfrac{{{n_e}}}{{{n_h}}} = \dfrac{1}{4}$
Which is the required ratio.
Note: Hall effect is the production of the voltage difference. It is caused across an electric conductor and is transverse to this electric current. It refers to the product of magnetic induction and current density when a magnetic field works perpendicular to the current flow.
Complete step by step solution:
When the sample contains an unequal number of carriers of both types whose mobilities are different, static equilibrium (no transverse movement of either electron or holes) is impossible in a magnetic field. The transverse electric field acts differently on electrons and holes.
If the ${E_y}$ is an electric field along the y-direction in the presence of the magnetic field $B$. And let the drift velocities of electrons and holes in x-direction be ${v_e}$ and ${v_h}$. The net Lorentz force per unit charge (effective transverse electric field) on electrons is
${E_y} - {v_e}B$
And on holes is
${E_y} + {v_h}B$
Now there is a transverse drift of electrons and holes and the net transverse current must be zero in equilibrium.
Therefore, the sum of the mobilities of the electrons and holes must be zero. Applying that in the mobility equation we get
${\mu _e}{n_e}e({E_y} - {\mu _e}{E_x}B) + {\mu _h}{n_h}e({E_y} + {\mu _h}{E_x}B) = 0$ (since $v = \mu {E_x}$)
Where $\mu $is the mobility, $e$ is the electronic charge and $n$ is the concentration.
Rearranging the equation we get
${E_y} = \dfrac{{{n_e}{\mu _e}^2 - {n_h}{\mu _h}^2}}{{{n_e}{\mu _e} + {n_h}{\mu _h}}}{E_x}B$
And we know the current density $({j_x})$ is
${j_x} = ({n_e}{\mu _e} + {n_h}{\mu _h})e{E_x}$
Thus the Hall coefficient $({R_H})$ is
${R_H} = \dfrac{{{E_y}}}{{{j_x}B}}$
Substituting the values we get
${R_H} = \dfrac{1}{e}\dfrac{{{n_e}{\mu _e}^2 - {n_h}{\mu _h}^2}}{{{{({n_e}{\mu _e} + {n_h}{\mu _h})}^2}}}$
Now since the Hall effect is not observed in the semiconductor the coefficient will be zero.
Therefore equating the above equation to zero we get,
$\dfrac{{{n_e}}}{{{n_h}}} = {\left( {\dfrac{{{\mu _e}}}{{{\mu _h}}}} \right)^2}$
Now $\eta = 0.2$ (given)
Therefore $\dfrac{{{n_e}}}{{{n_h}}} = \dfrac{1}{{{\eta ^2}}}$
$ \Rightarrow \dfrac{{{n_e}}}{{{n_h}}} = \dfrac{1}{4}$
Which is the required ratio.
Note: Hall effect is the production of the voltage difference. It is caused across an electric conductor and is transverse to this electric current. It refers to the product of magnetic induction and current density when a magnetic field works perpendicular to the current flow.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE