
The efficiency of a heat engine is \[30\% \]. If it gives \[30\;{\rm{kJ}}\] heat to the heat sink, then it should have absorbed __________kJ heat from the heat source.
A. 9
B. 39
C. 29
D. 42.8
Answer
485.4k+ views
Hint:The above problem can be resolved by using the concepts and the fundamentals of the heat engine. The heat engine is one of the special machines that work on the principle of thermodynamics laws. In the heat engine analysis, when some amount of thermal energy is provided to the system, then the system will be observed to do some work. Then, the heat engine's efficiency is given by taking the ratio of the thermal energy given to the engine tank and the output obtained in the form of work.
Complete step by step answer:
Given:
The efficiency of a heat engine is, \[\eta = 30\% \].
The heat output is, \[{H_O} = 30\;{\rm{kJ}}\].
The expression for the efficiency of heat engine is given as,
\[\eta = 1 - \dfrac{{{H_O}}}{{{H_i}}}\]
Here, \[{H_i}\] represents the heat absorbed from the heat source.
On solving by substituting the values in the above equation as,
\[\begin{array}{l}
\eta = 1 - \dfrac{{{H_i}}}{{{H_O}}}\\
0.3 = 1 - \dfrac{{{H_i}}}{{30\;{\rm{kJ}}}}\\
{H_i} = 42.8\;{\rm{kJ}}
\end{array}\]
Therefore, the heat absorbed from the heat source is of \[42.8\;{\rm{kJ}}\] and option (D) is correct.
Note: To resolve the above problem, one must understand the concept and the heat engine; the heat engine is that kind of machine that takes some energy and converts that fraction of energy into the mechanical work. And rest part of the energy is stored within the system in the form of internal energy. Therefore, the working principle of a heat engine is generally based on the first law of thermodynamics.
Complete step by step answer:
Given:
The efficiency of a heat engine is, \[\eta = 30\% \].
The heat output is, \[{H_O} = 30\;{\rm{kJ}}\].
The expression for the efficiency of heat engine is given as,
\[\eta = 1 - \dfrac{{{H_O}}}{{{H_i}}}\]
Here, \[{H_i}\] represents the heat absorbed from the heat source.
On solving by substituting the values in the above equation as,
\[\begin{array}{l}
\eta = 1 - \dfrac{{{H_i}}}{{{H_O}}}\\
0.3 = 1 - \dfrac{{{H_i}}}{{30\;{\rm{kJ}}}}\\
{H_i} = 42.8\;{\rm{kJ}}
\end{array}\]
Therefore, the heat absorbed from the heat source is of \[42.8\;{\rm{kJ}}\] and option (D) is correct.
Note: To resolve the above problem, one must understand the concept and the heat engine; the heat engine is that kind of machine that takes some energy and converts that fraction of energy into the mechanical work. And rest part of the energy is stored within the system in the form of internal energy. Therefore, the working principle of a heat engine is generally based on the first law of thermodynamics.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
