
The dimensional formula of Planck’s constant is:
$\begin{align}
& \text{A}\text{. }\left[ M{{L}^{2}}{{T}^{-1}} \right] \\
& \text{B}\text{. }\left[ M{{L}^{2}}{{T}^{-2}} \right] \\
& \text{C}\text{. }\left[ M{{L}^{0}}{{T}^{2}} \right] \\
& \text{D}\text{. }\left[ ML{{T}^{-2}} \right] \\
\end{align}$
Answer
507k+ views
Hint: We can find the dimensional formula of any constant from a known universal equation. The equation should not have other unknown constants. To derive the dimensional formula of Planck’s constant we can use the energy equation for photon’s energy.
Formula Used:
Energy of photon is given by,
$E=h\nu $
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light.
Complete answer:
Planck’s constant is one of the most fundamental constants in the domain of quantum mechanics.
So, the dimensional analysis of the Planck’s constant is of utmost interest.
We know that the energy of a photon is given by,
$E=h\nu $
$\Rightarrow h=\dfrac{E}{\nu }$
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light
So, we can write,
$\left[ h \right]=\dfrac{\left[ E \right]}{\left[ \nu \right]}$.......................(1)
If we can find the dimensions of energy (E) and frequency (v), then we can find the dimension of Planck’s constant.
Dimensional analysis of basic quantities can be found using the definition.
Energy is given by,
$E=Fs$
Where,
F is the force on an object
s is the distance travelled by an object due to the force
So, we can write,
$\left[ E \right]=\left[ F \right]\left[ s \right]$........................(2)
Force is also given by,
$F=ma$
Hence, the dimension of force is,
$\left[ F \right]=\left[ m \right]\left[ a \right]$
$\Rightarrow \left[ F \right]=ML{{T}^{-2}}$
So, we can put the dimension of force in equation (2).
We have,
$\left[ E \right]=ML{{T}^{-2}}\times L$
$\Rightarrow \left[ E \right]=M{{L}^{2}}{{T}^{-2}}$
Now, let's find the dimension of frequency.
Frequency of a wave is given by the inverse of the time period.
Hence, we can write,
$\nu =\dfrac{1}{T}$
So, the dimension of frequency is,
$\left[ \nu \right]={{T}^{-1}}$
We can put the dimensions of energy and frequency in equation (1).
So, we have,
$\left[ h \right]=\dfrac{M{{L}^{2}}{{T}^{-2}}}{{{T}^{-1}}}=M{{L}^{2}}{{T}^{-1}}$
Hence, the dimension of Planck’s constant is:
$\left[ h \right]=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
The correct option is: (A).
Note:
Dimensional analysis of a quantity can be done using any equation which does not contain more than one number of unknown quantities. For example, if there was an equation like the following:
$F=(ma)(kb)$
Where, you know the dimensions of only m and k, then we could not find the dimensions of a or b using this equation.
Formula Used:
Energy of photon is given by,
$E=h\nu $
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light.
Complete answer:
Planck’s constant is one of the most fundamental constants in the domain of quantum mechanics.
So, the dimensional analysis of the Planck’s constant is of utmost interest.
We know that the energy of a photon is given by,
$E=h\nu $
$\Rightarrow h=\dfrac{E}{\nu }$
Where,
$h$ is Planck’s constant
$\nu $ is the frequency of light
So, we can write,
$\left[ h \right]=\dfrac{\left[ E \right]}{\left[ \nu \right]}$.......................(1)
If we can find the dimensions of energy (E) and frequency (v), then we can find the dimension of Planck’s constant.
Dimensional analysis of basic quantities can be found using the definition.
Energy is given by,
$E=Fs$
Where,
F is the force on an object
s is the distance travelled by an object due to the force
So, we can write,
$\left[ E \right]=\left[ F \right]\left[ s \right]$........................(2)
Force is also given by,
$F=ma$
Hence, the dimension of force is,
$\left[ F \right]=\left[ m \right]\left[ a \right]$
$\Rightarrow \left[ F \right]=ML{{T}^{-2}}$
So, we can put the dimension of force in equation (2).
We have,
$\left[ E \right]=ML{{T}^{-2}}\times L$
$\Rightarrow \left[ E \right]=M{{L}^{2}}{{T}^{-2}}$
Now, let's find the dimension of frequency.
Frequency of a wave is given by the inverse of the time period.
Hence, we can write,
$\nu =\dfrac{1}{T}$
So, the dimension of frequency is,
$\left[ \nu \right]={{T}^{-1}}$
We can put the dimensions of energy and frequency in equation (1).
So, we have,
$\left[ h \right]=\dfrac{M{{L}^{2}}{{T}^{-2}}}{{{T}^{-1}}}=M{{L}^{2}}{{T}^{-1}}$
Hence, the dimension of Planck’s constant is:
$\left[ h \right]=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
The correct option is: (A).
Note:
Dimensional analysis of a quantity can be done using any equation which does not contain more than one number of unknown quantities. For example, if there was an equation like the following:
$F=(ma)(kb)$
Where, you know the dimensions of only m and k, then we could not find the dimensions of a or b using this equation.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
